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ABSTRACT 

In recent years, peroxymonosulfate advanced oxidation processes (PMS-AOPs) have 

become an attractive method for the treatment of refractory organic wastewater, relying 

on their ability to generate highly oxidizing active species (SO4·-, ·OH, and 1O2, etc.). In 

this review, the characteristics of PMS-AOPs are firstly introduced, followed by a 

systematic introduction of peroxymonosulfate (PMS) activation methods, including 

energy-assisted activation, metal-based material activation, carbon-based material 

activation, and composite system activation. Subsequently, the effects of critical 

parameters (wastewater pH, reaction temperature, PMS dosage, catalyst loading, 

inorganic ions and natural organic matter, and reaction time) on the performance of 

PMS-AOPs were discussed. Furthermore, the working mechanisms of PMS in PMS-AOPs 

were proposed, and finally, potential research directions in the near future were 

suggested. This review provides fundamental analysis and discussion of PMS-AOPs in 

the treatment of refractory organic wastewater. 
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1. Introduction 

With the acceleration of global industrialization and urbanization, large amounts of wastewater containing 

refractory organic pollutants are discharged into the water environment [1]. The pollutants in wastewater are 

often complex in structure, highly toxic, high bioaccumulation, and persistent in the environment, posing a serious 

threat to human health and the balance of ecosystems [2]. Traditional physical methods (such as adsorption, 

filtration, and membrane separation) and biological treatment methods are often costly and ineffective (exhibiting 

low removal efficiency and/or incomplete mineralization) for treating such refractory organic pollutants [3-5]. 

Therefore, it is urgent to develop new wastewater treatment technologies that are low-cost, high-efficiency and 

environmentally friendly. 

In recent years, peroxymonosulfate advanced oxidation processes (PMS-AOPs) have emerged as a promising 

solution for degrading refractory organic pollutants due to their ability to generate highly reactive oxygen species 

(ROS) such as SO4·-, ·OH and 1O2 [6]. Numerous reviews have explored the activation methods and proposed 

radical/non-radical mechanisms of PMS-AOPs, however, these studies narrowly focus on specific activators or 

mechanisms, they lack systematic analysis of operational parameters and compatibility with actual water matrices 

[7-10]. 

Our review first introduces the characteristics of PMS-AOPs, and then systematically summarizes 

peroxymonosulfate (PMS) activation methods, including energy-assisted activation (thermal, photocatalytic, 

electrochemical and plasma activation), metal-based material activation (homogeneous and heterogeneous 

system activation), carbon-based material activation, and composite system activation. Subsequently, this review 

discusses the influence of key factors such as reaction conditions (pH, temperature), oxidation system parameters 

(PMS dosage and catalyst loading), and water matrix components (inorganic ions, natural organic matter) on PMS-

AOPs performance. Finally, this paper discusses the working mechanism of PMS and proposes future research 

directions for PMS-AOPs. The objective of this review is to provide a fundamental analysis of PMS-AOPs for 

treating refractory organic wastewater; to bridge the knowledge gap between laboratory research and practical 

application; and to guide future research towards scalable, sustainable organic wastewater treatment solutions. 

2. Characteristics of PMS-AOPs 

PMS and peroxydisulfate (PDS) are typical oxidants in the persulfate advanced oxidation processes (AOPs) [11]. 

They exhibit distinct properties and structures, as detailed in Table 1 and Fig. (1). PDS has a symmetrical structure 

and is more stable; in contrast, PMS has an asymmetrical structure and is relatively easier to activate by activators 

[12, 13]. Therefore, many scholars have chosen PMS for their research in recent years. 

Table 1: Critical physicochemical properties of PMS and PDS. 

 
Molecular Formula 

Oxidation-Reduction  

Potential (V) 
O-O bond Moment 

O-O Bond  

Energy (kJ/mol) 
Solubility (g/L) 

PMS HSO5- 1.82  1.460 140.2 – 213.3  >250 

PDS S2O82- 2.01  1.497 140.2 556 

 

As a new type of oxidant, PMS has attracted much attention in AOPs due to its high efficiency and 

environmental friendliness [14, 15]. Compared with traditional Fenton technology, which relies on the strong 

oxidation capacity of ·OH, the SO4·- generated by PMS activation have a higher oxidation-reduction potential (2.5 – 

3.1 V) and can efficiently break the chemical bonds of complex organic pollutants. It exhibits excellent 

performance in the degradation of refractory organic compounds such as antibiotics and persistent organic 

pollutants [6, 16]. In addition, the PMS system has broken through the limitations of traditional Fenton technology, 

which relies on an acidic environment (pH 2 – 4). It can maintain its activity under neutral to alkaline conditions, 

significantly reducing the energy consumption and operating costs of pH adjustment in practical applications [17]. 

From a reaction kinetics perspective, the half-life of SO4·- (30 – 40 μs) is extended by 1 – 2 orders of magnitude 
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compared to ·OH (<1 μs). This characteristic enables it to diffuse more easily to the pollutant interface in 

heterogeneous systems, thereby enhancing mass transfer efficiency and degradation rates [18]. Additionally, PMS 

is stored in solid powder form with high stability. Its activation methods are diverse, including thermal energy, light 

radiation, transition metal catalysis, and interaction with carbon-based material interfaces, providing flexible 

technical adaptability for different water quality conditions and application scenarios. 

 

Figure 1: Comparison of the molecular structures and activation processes of PMS and PDS. 

The activation of PMS is a critical step in realizing its oxidative potential. Different activation methods trigger 

PMS decomposition through energy transfer, electron transfer, or surface interactions, thereby producing ROS. 

The ROS produced after PMS activation are diverse, mainly including 1O2, O2
•-, SO4·- and ·OH. The active substances 

that play a dominant role in different systems are generally different. 

3. Activation Method for PMS 

3.1. Energy-assisted Activation 

3.1.1. Thermal Activation 

The core mechanism of thermal activation lies in the increase in molecular thermal motion caused by heat 

energy, which promotes the breaking of O-O bonds in PMS, generating highly active SO4·- and ·OH [19, 20]. The 

reaction pathway is shown in Eq. (1). When the reaction temperature was increased from 40°C to 80°C, the 

removal efficiency of tetracycline by PMS within 90 minutes increased from 75.7% to 95.6% [21]. Thermal 

activation of PMS can also enhance the selectivity of the system for pollutant degradation. When real coking 

wastewater was treated with 60°C/PMS, the biodegradability index (BOD5/COD) of the wastewater was significantly 

increased from the initial 0.21 to 0.4 after 60 minutes of reaction. Additionally, as shown in Fig. (2), the removal 

rates of two typical nitrogen-containing heterocyclic compounds (quinoline and indole) in the wastewater were 

selectively degraded by 45% and 85%, respectively [22]. Traditional direct heating can directly increase the 

temperature of the reaction system through heat transfer, but it typically requires a long heating time and is 

limited by the heat transfer processes of conduction and convection from the outside to the inside. This results in 

low thermal efficiency and significant heat loss. 

 HSO5
−

∆
→ SO4

·− +· OH (1) 

As a high-frequency electromagnetic wave, microwave (MW) energy can be absorbed by polar molecules or 

ions within a substance and directly converted into heat energy at the molecular level through a dielectric heating 

mechanism, thereby heating the reaction system [23]. MW-assisted thermal activation PMS significantly promotes 

the removal of thermally stable organic pollutants. As shown in Fig. (2), the MW/PMS system achieved a 97.9% 

removal rate of atrazine within 30 minutes, which is 3.5 times that of the traditional heating/PMS system [24]. This 

inward-outward heating method avoids the heat transfer limitations of traditional external heating and 

significantly improves the heating rate and efficiency. However, due to its high energy consumption, MW heating is 

currently still in the laboratory stage and is difficult to apply in practice. 
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Figure 2: Schematic diagram of the selective degradation of nitrogenous heterocyclic compounds in phenol-rich coking 

wastewater by thermal-activated PMS [22]. 

Thermal activation can effectively break the O-O bond of PMS to produce ROS. However, excessive 

temperatures (>80°C) may cause free radicals to self-quench or trigger side reactions, thereby reducing the 

removal efficiency of target pollutants [25]. Therefore, optimizing the temperature range (usually 30 – 80°C) is key 

to the engineering application of thermal activation technology. In actual wastewater treatment, thermal 

activation PMS technology has the advantages of no catalyst addition and simple operation, but continuous 

heating results in high equipment operating costs. Thermal activation can be coupled with other technologies. 

3.1.2. Photocatalytic Activation 

Photocatalytic activation of PMS generally utilizes the light absorption properties of semiconductor materials 

(such as TiO2 and BiVO₄) to generate electron-hole pairs (e⁻-h⁺) under illumination [26, 27]. Conduction band 

electrons (e⁻) directly activate PMS to generate SO4·-, while valence band holes (h⁺) can oxidize water or pollutants. 

The reaction process is shown in Eqs. (2), (3) [28]. 

 HSO5
− + e− → SO4

·− +· OH (2) 

 H2O + h+ →· OH  (3) 

The light sources commonly used in photocatalytic PMS activation technologies are mainly ultraviolet (UV) and 

visible light [29]. High-energy UV light has a higher activation efficiency for PMS, as its photon energy is sufficient 

to directly break the O-O bond in PMS, thereby efficiently generating a variety of ROS [30]. In UV/PMS systems, 

pollutant degradation generally occurs through multiple pathways, including direct oxidation (UV photolysis and 

PMS oxidation) and radical oxidation (SO4·- and ·OH) [31]. Compared to PMS oxidation alone and direct UV 

photolysis, the UV/PMS system achieved a degradation rate of >99% for initial concentrations of 60 μM Cu(II)-EDTA 

within 10 minutes [32]. UV activation is an environmentally friendly technology that does not require additional 

chemical reagents. However, this method has significant limitations in practical applications, primarily because the 

UV component of sunlight is extremely low (typically less than 5%), resulting in limited available natural light 

energy [28]. 

However, the photon energy of visible light is relatively low and typically insufficient to directly break the O-O 

bonds in PMS. Therefore, visible light responsive catalysts are often required to achieve visible light activation of 

PMS [33]. A study prepared a PTCDA/MIL-88A(Fe) photosensitive catalyst to activate PMS, achieving a 98.4% 

removal efficiency of the herbicide 2,4-dichlorophenoxyacetic acid under 300 W LED visible light conditions within 

10 minutes [34]. Additionally, modifying catalysts through element doping or constructing heterojunctions can 

efficiently promote charge separation and transfer, and effectively expand their photo response range to the 

visible light region [35-37]. A study used hexagonal boron nitride (h-BN) as an electron sink to construct a 

Cu2O@BN heterojunction catalyst for photocatalytic activation of PMS to degrade bisphenol A. The degradation 

efficiency was 3.8 times higher than the Cu2O/PMS/Light system [38]. Graphitic carbon nitride (g-C₃N₄) exhibits 

excellent photo responsive properties [39, 40]. Elemental doping at its interstitial sites significantly enhances its 
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photocatalytic performance [41]. The co-doping of sulfur (S) and chlorine (Cl) elements effectively regulates the 

electronic structure of the catalyst surface, thereby significantly enhancing the light absorption capacity and 

photocatalytic activation performance of g-C₃N₄ [42]. As shown in Fig.  (3), while the SCl-CN photocatalyst 

efficiently activates PMS to produce more SO4·- and ·OH, the electron transfer efficiency is also greatly increased. 

The reaction rate constants for pollutant degradation are 3.5 times, 13.4 times, and 14.7 times higher than CN, S-

CN, and Cl-CN, respectively [43]. 

 

Figure 3: PMS activation under photocatalysis in the SCl-CN/PMS/ visible light system [43]. 

3.1.3. Electrochemical Activation 

Electrochemical enhancement strategies have been proven to significantly improve PMS activation efficiency by 

promoting interfacial electron transfer and metal redox cycles, providing a new approach for pollutant 

degradation [44]. Electrochemical reactions primarily occur at the electrode interface. In anodic reactions, 

electrons are typically directly transferred to the PMS, where oxidation reactions occur to generate SO4·- and 

degrade pollutants. A study employed the drop-casting method to prepare a novel CuBi2O4 anode. The CuBi2O4 

anode/PMS system achieved a degradation efficiency of 74.60% for the herbicide prometryn. The mechanism of 

electro-activation of PMS by CuBi2O4 anode is shown in Fig. (4) [45]. Additionally, due to the activation of water 

molecules on the anode surface, the system often generates ·OH, which further react with PMS to form SO4·- [46]. 

In the cathodic reaction, transition metals and electron-rich carbon-based cathodes can transfer electrons to PMS, 

breaking the O-O bond and forming SO4·- [47]. A study fixed 1T/2H-MoS2 on carbon paper (carbon fiber cloth) as 

the cathode, forming a 1T/2H-MoS2@CFC cathode/PMS system, achieving removal efficiencies of 55.1% and 54.0% 

for carbamazepine and phenol, respectively, within 90 minutes [48]. A MoSe2/CNC cathode prepared by the 

hydrothermal method was used to construct an EC/MoSe2@CNC cathode/PMS system, which achieved removal 

rates of 99.11%, 100%, and 91.54% for norfloxacin, Cu, and TOC within 60 minutes [44]. 

 

Figure 4: Schematic diagram of the mechanism of electro-activation of PMS by CuBi2O4 anode [45]. 

Current density is also an important parameter for electro-activated PMS. Current density exhibits a significant 

positive correlation with PMS activation efficiency, and increasing current density can accelerate radical generation 

[49]. For example, when the current density was increased from 8 mA/cm2 to 32 mA/cm2, the degradation rate 
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constant of acidic dye wastewater increased by 2.95 times [50]. However, beyond a critical value, efficiency growth 

slows down, and even decreases due to side reactions such as hydrogen evolution [51], thereby limiting practical 

application benefits. For example, in a study on the electro activation of PMS for the degradation of 

sulfamethoxazole (SMX), when the current density was increased from the optimal value of 5 mA/cm2 to 10 

mA/cm2, the degradation rate constant of SMX decreased from 0.0870 to 0.0531, a reduction of 39% [52]. Different 

experimental systems require the selection of appropriate current densities based on specific requirements. 

Additionally, NaCl as an electrolyte typically exhibits better degradation performance [44]. This may be attributed 

to Cl⁻ generating active chlorine (HClO/ClO⁻) at the anodized surface, which reacts with PMS to produce active free 

radicals, as detailed in Section 4.4. 

It is worth mentioning that waste lithium-ion batteries (LIBs) are rich in leachable transition metals (such as Co, 

Ni, Mn), and recycling them to prepare PMS activation catalysts has become a green approach to achieving 

synergistic effects between resource regeneration and AOPs [53-55].A study utilized LiCoO2 electrode waste from 

LIBs to activate PMS, simultaneously achieving the rapid degradation of 2,4,6-trichlorophenol (TCP) and the 

removal of ammonia nitrogen (NH₄⁺-N) [14]. 

3.1.4. Plasma Activation 

Low-Temperature Plasma (LTP) technology, primarily generated through methods such as gliding arc discharge, 

dielectric barrier discharge (DBD), corona discharge, and glow discharge, represents an emerging approach for 

activating PMS [56]. Characterized by its non-thermal equilibrium properties (where electron temperature 

significantly exceeds gas temperature), mild reaction conditions, high reactivity, and rapid initiation, this 

technology provides a novel pathway for the efficient activation of PMS to degrade organic pollutants [57]. The 

core mechanism of LTP-activated PMS for organic wastewater treatment lies in utilizing the combined effects 

generated during plasma discharge [58]. These effects include high-energy electrons, excited species, UV 

radiation, and localized high-temperature microzones, which collectively facilitate the efficient activation of PMS 

molecules [59]. This process primarily generates highly oxidizing SO₄·⁻ and ·OH [60]. Concurrently, the 

accompanying UV photolytic action and localized thermal effects synergistically contribute to the degradation of 

organic pollutants [61]. 

However, despite its high reactivity, plasma technology often exhibits the limitation of poor reaction selectivity 

when applied alone [57]. To overcome this drawback and further enhance degradation efficiency, coupling LTP 

with PMS, or further introducing catalysts (e.g., carbon-based materials) to construct a synergistic catalytic system, 

has emerged as an effective strategy. Typical studies of PMS activation by LTP are summarized in Table 2. Notably, 

coupling LTP with carbon nanotubes (CNTs) not only significantly alters the electronic characteristics (e.g., work 

function, electron density) and surface functional groups of the material, but also enables the directed modulation 

of the oxidation mechanism within the PMS activation system [62, 63]. As illustrated in Fig. (5), when CNTs 

subjected to O₂ plasma etching are employed as catalysts, the contribution of the non-radical oxidation pathway 

dominated by singlet oxygen (¹O2) to pollutant degradation increases substantially from 9.8% to 54.9% [64]. This 

shift effectively transitions the oxidation pathway from radical-dominated to non-radical-dominated. 

 

Figure 5: Schematic diagram of O2 plasma-etched CNTs and their activation of PMS for oriented singlet oxygen production [64]. 
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Table 2: Typical studies of PMS activation by LTP technology. 

Activation  

Technologies 

Treatment  

Objects 
Treatment Effects 

Dominant 

ROS 
Ref. 

Ar plasma-etching  

carbon nanotube 
Sulfamethoxazole 

The TOC removal was 42.5%, which is 4.6 times higher than the 

reaction rate constant of the conventional CNT/PMS system. 
1O2 [58] 

DBD plasma Chlortetracycline 

The removal rate of the coupled DBD/PMS system was 81.9%, which 

was 23.2% higher than that of the conventional PMS system, and the 

energy yield was 13.1% higher. 

·OH [60] 

DBD plasma Gatifloxacin 

The removal of gatifloxacin by DBD/PMS system was about 96.3%. 

The synergistic coefficient was about 1.39, indicating a significant 

synergistic effect of DBD plasma on the activation of PMS. 

·OH and  

SO4·- 
[65] 

DBD plasma Levofloxacin 

At pH 8.7, levofloxacin degradation reached 94.1% and TOC removal 

43.8%, which were 2.52 and 2.79 times higher than that of 

conventional aeration, respectively. 

·OH and  
1O2 

[66] 

DBD plasma 
Perfluorooctanoic 

acid 

The degradation and defluorination rates of the DBD-PMS system 

reached 99.2% and 96.96%, respectively, which were significantly 

higher than those of the DBD plasma treatment alone (90.33%, 61%). 

·OH [67] 

DBD plasma 
Potassium ethyl 

xanthate 

The degradation efficiency of potassium ethyl xanthate in the 

combined DBD/PMS system for 25 min was about 90.5%, which was 

significantly higher than that of the DBD and PMS systems alone 

(70.5% and 9.5%), showing a significant synergistic effect. 

·OH and  

SO4·- 
[68] 

Liquid-phase plasma Sulfamethoxazole 

The degradation efficiency of PMS/liquid-phase plasma is 1.35 times 

higher than that of liquid-phase plasma alone, and the TOC removal 

rate is approximately 2.5 times higher. 

·OH [69] 

N2 plasma-etching CNTs Phenol 

The degradation rate constant for phenol in the N-CNT-60/PMS 

system (0.1269 min-¹) was 10 times higher than that of the original 

MWCNT/PMS system. 

1O2 [62] 

O2 plasma-etching CNTs 
2,4- 

dichlorophenol 

Degradation of 2,4-dichlorophenol reached 97% in 20 min, with a 

degradation rate 4.1 times higher than that of the conventional 

carbon nanotube. 

 1O2 [64] 

O2 plasma-modified CNTs Sulfamethoxazole 

The O-CNT-60/PMS system completely degraded sulfamethoxazole 

in 40 min with kobs of 0.09557 min-¹, which is 5.5 times higher than 

the original MW/CNT. 

1O2 and  

SO4·- 
[63] 

Plasma Electrolytic  

Oxidation treated  

2-D black TiO2 

Tetracycline 

The tetracycline degradation rate constant of the synergistic system 

reached 17.33 × 10-³ min-¹ with a synergy factor of 2.10, which was 

significantly better than d single system (1.40). 

·OH and  

SO4·- 
[61] 

Underwater bubbling plasma 

and diatomite-CoFe2O4 
Ciprofloxacin 

Degradation of ciprofloxacin was 94.7% in 30 min with a kinetic 

constant of 0.097 min-¹ and an energy efficiency of 145.2 mg/kW・h. 
·OH [70] 

Water surface  

plasma (WSP) 
Ciprofloxacin 

The ciprofloxacin removal efficiency of the WSP/PMS system 

increased from 50.9% to 96.6% with a synergy factor of 3.224 and a 

kinetic constant of 0.113 min-¹ for WSP alone. 

·OH [71] 

 

3.2. Metal-based Materials Activation 

3.2.1. Homogeneous System Activation 

Transition metal ions (e.g., Co²⁺, Fe²⁺, Pd²⁺, Cu³⁺, Ni³⁺) are widely used to activate PMS systems due to their high 

catalytic activity and operational convenience [72-76]. The Pd²⁺/PMS system can achieve a degradation efficiency 

of 100% for phenolic compounds (4-Chlorophenol, dichlorophenol, and trichlorophenol) within 5 minutes [74]. 

The electron transfer cycle between metal ions is a key factor in activating PMS to generate ROS for the removal of 

organic pollutants; however, this cycle is often hindered to varying degrees in actual experimental environments 

[77]. Researchers typically use reducing agents (such as boron, hydroxylamine, and cysteine) or chelating agents 
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(such as citric acid, protocatechuic acid, and sinapic acid) to enhance the recycling efficiency of metal ions [17, 78-

82]. As shown in Fig. (6), the addition of citric acid promotes the cycle of Fe(II) and Fe(III) in a homogeneous PMS 

system, which is more efficient in activating PMS and thus produces more ROS [80]. This type of homogeneous 

activation process does not require complex equipment and has potential for large-scale application. However, 

the leaching of metal ions poses a risk of secondary pollution, limiting its practical environmental application [83]. 

Therefore, researchers often employ strategies such as using metal oxides, constructing metal-organic framework 

(MOF), and adding suitable carriers to enhance `the system's catalytic activation performance for PMS. 

 

Figure 6: Schematic diagram showing that citric acid enhances the Fe(II) and Fe(III) cycle and that the Fe(II)-CA/PMS system 

inhibits antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARG) [80]. 

3.2.2. Heterogeneous System Activation 

In the field of PMS heterogeneous activation, metal oxides have attracted considerable attention as commonly 

used catalysts. Similar to homogeneous systems, the catalytic activity of metal oxides mainly depends on the 

redox cycle of metal ions Me(n)
+/Me(n+1)

+ [84]. At the same time, the electronic structure characteristics and defect 

state of the catalyst itself have a significant regulatory effect on the decomposition efficiency of PMS and the 

generation of ROS [18]. Compared to single-metal oxide systems, bimetallic oxides exhibit superior performance 

advantages in PMS activation. This is attributed to the dynamic electron transfer mechanism between the two 

metals. This mechanism not only enables synergistic catalytic effects between the two metals and promoting 

efficient redox reactions, but also maintains the stability of the catalytic cycle through continuous electron 

transfer, as shown in Fig. (7) [8]. In the degradation study of bisphenol A, the treatment effect of the Cu-Mn 

bimetallic CuMnO2/PMS system was 5 times and 21 times higher than the Mn2O3/PMS and Cu2O/PMS single metal 

systems [85].  

Traditional bimetallic oxides often face challenges of insufficient structural stability due to their low lattice 

energy [86]. By inducing phase transformations through high-temperature calcination (>600°C), these systems can 

be restructured into stable structures such as perovskite (ABO3) or spinel (AB2O4). The ordered occupation of B-

site cations and strong metal-oxygen bond energies significantly suppress metal leaching, thereby enhancing the 

catalytic cycle stability [87, 88]. MOF composites and their derivatives, with their multi-level pore structures and 

dispersed metal sites, can significantly improve mass transfer efficiency while effectively suppressing the 

agglomeration of active components and metal leaching in traditional metal/metal oxide catalysts [89, 90]. 

Additionally, heteroatom doping is expected to enhance the performance of PMS in degrading organic pollutants 

by altering electronic structures and reconfiguring catalytic sites. Sulfur doping promotes the conversion of low-

spin Co to high-spin Co. It increases the internal electron escape probability of Co3O4, which enhances the 

activation effect of PMS, achieving a removal rate of 96.4% for ofloxacin within 20 minutes [91]. Table 3 shows the 

studies on the activation of PMS by related metal-based catalysts. 
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Figure 7: Transition metals activation of PMS on the surface of catalyst [8]. 

Table 3: Typical studies of PMS activation by metal-based catalysts. 

Activation 

Technologies 

Treatment 

Objects 

Treatment 

Times 
Treatment Effect Ref. 

Bi2Fe4O9 Metronidazole 10 min 
100% degradation of MTZ (5 mg/L). The reaction rate constant of 0.7629 1/min  

was significantly better than that of the single PMS system (0.025 1/min) 
[92] 

CoCuAl-LDH Rhodamine B 15 min 
>98% degradation of Rh B (100 mg/L). Copper can improve the conductive 

efficiency of CoAl-LDH. 
[93] 

CoFe-LDH Acid Red 27  15 min 
95% degradation. The degradation efficiency of CoFe-LDH was nearly twice that  

of conventional flake LDH (F-LDH). 
[94] 

Co3O4@LDH-AC Levofloxacin 4 min 
100% degradation. Degradation efficiency for actual hospital wastewater (COD> 

150 mg/L) is maintained at more than 90%. 
[95] 

FeCo2O4 Ethylparaben 30 min 94.6% degradation and 40.5% TOC removal efficiencies were achieved. [6] 

Fe-Mn DAC 2-chlorophenol 5 min 
100% degradation of 2-CP. Nearly 100% selectivity of high-valent metal oxides  

with 100% PMS utilization efficiency. 
[96] 

Fe-5Cu 4-chlorophenol  120 min 92% degradation, 62% dichlorination and 60% mineralization. [15] 

MOF/ 

CoS2@C-3 
Ciprofloxacin 10 min 

>90% degradation of CIP (10 mg/L). The system demonstrated exceptional 

resistance to humic acid (HA), significant environmental stability, and a wide  

range of pH adaptation. 

[97] 

MOF/CuFe-N Rhodamine B 30 min 99.5 % degradation of Rh B, with a mineralization rate of 60 %. [98] 

MOF/Cu-Fe 
Tetracycline, 

phenol, etc. 
30 min 

>95% degradation. Among them, phenol was degraded by 100% in a wide pH  

range of 5~9, and the mineralization efficiency reached 70%. 
[99] 

MOF/Fe-Co Sulfamethoxazole 30 min 
100% degradation of SMX (5 mg/L). SO4·− and 1O2 played a critical role in the 

degradation of SMX. 
[100] 

MOF/PDA-CoNi 
Tetracycline 

hydrochloride 
30 min 99.2% degradation of THC (15 mg/L). TOC removal rate of 61.8%. [101] 

NiCo2O4 Diclofenac 10 min 99.9% degradation and 97.2% mineralization were achieved.  [16] 

ZIF-67/CoxB@NC-450 Tetracycline 30 min 
Achieving a degradation efficiency of 96% and a rate constant of 0.210 min−1.  

The removal rate of TC from actual water bodies exceeds 85%. 
[102] 

ZIF-67/Co3O4@ CNT 
Phenolic 

compounds 
15 min 

The mineralization of high EDC pollutants (hydroquinone, p-methoxyphenol) by  

the system was 83.63%, which was significantly better than single Co3O4 or CNT. 
[103] 

ZIF-67/Co-Fe@PBA Metronidazole 15 min 

>98% degradation of MNZ, Both MNZ and its intermediates exhibit significantly 

reduced levels of acute toxicity, developmental toxicity, and mutagenicity;  

notable secondary contamination. 

[104] 

ZIF-67/PBA@SiO2 Levofloxacin 30 min 
95.5% degradation of LEV (20 mg/L). The system exhibits strong anti-interference 

ability and ecological environment safety. 
[105] 



Wang et al. The Global Environmental Engineers, 12, 2025 

 

46 

3.3. Carbon-based Material Activation 

As a metal-free catalytic strategy, carbon-based materials (graphene, CNTs, activated carbon, and biochar, etc.) 

leverage their excellent adsorption properties and electronic conductivity to efficiently activate PMS, realizing  

effective degradation of organic pollutants [106]. The core mechanism of activation lies in the oxygen-containing 

functional groups (e.g., carboxyl and carbonyl groups) on the material surface adsorbing PMS (HSO5⁻) through 

hydrogen bonding or electrostatic interactions. This forms peroxide-like intermediates (C=O···HSO5⁻, PMS*), which 

then trigger a pollutant oxidation degradation pathway dominated by non-radical (1O2) species [107]. These 

materials are widely available and cost-effective, offering a promising environmentally friendly technological 

approach for environmental pollution control. Biomass carbon microcoil aerogels (BCCA) activated PMS exhibit the 

advantages of low cost, ultra-lightweight, high elasticity, and recyclability. Within 10 minutes, the removal efficiency 

for methylene blue and methyl orange exceeded 95%, and within 90 minutes, the removal efficiency for 

tetracycline reached 96.5% [108]. Activated carbon fiber (ACF) activated PMS treated coking wastewater, achieving 

removal rates of 76%, 98%, and 98% for COD, pH, and color, respectively. At the same time, the biochemical 

oxygen demand to chemical oxygen demand ratio (BOD5/COD) of the wastewater significantly improved from 0.16 

at the initial stage to 0.72, and its biodegradability was greatly improved [109]. 

Composite catalytic systems constructed with carbon-based materials and metal-based materials can 

effectively solve problems such as metal ion leaching and recovery difficulties in traditional metal catalysts [110-

112]. By introducing carbon-based carriers, composite materials can be designed with unique structures such as 

core-shell structures and limited loading to prevent active particle agglomeration [88, 113]. The system primarily 

relies on the excellent electron transfer ability of metal ions and the strong oxidizing properties of 1O2 to degrade 

pollutants, as shown in Fig. (8). A study prepared a Fe(acac)3@ZIFs catalyst with a dodecahedral structure 

dispersed in a porous carbon framework using iron acetylacetonate-coated zeolite imidazole as the raw material. 

This catalyst exhibits excellent stability with minimal iron ion leaching. It achieved an effective degradation of 

87.20% of pharmaceutical pollutants in actual hospital wastewater [114]. 

 

Figure 8: Schematic diagram of Co3O4@CF-activated PMS degradation of phenolic pollutants [115]. 

Additionally, structural defects (e.g., edge sites, vacancies) and doped heteroatoms (N, S, P) in the carbon 

framework can alter the electronic distribution of the material, forming electron-rich centers and enhancing the 

catalytic activity for PMS [116-118]. A study demonstrated that nitrogen-doped graphene-loaded ruthenium (N-

rGO-Ru) catalyst achieved a removal efficiency of 92% for sulfamethoxazole within 120 minutes, significantly 

higher than that of N-rGO/PMS (74%) and rGO/PMS (70.11%) [119]. Doping nitrogen into cobalt phosphide-based 

materials to activate PMS achieved a removal efficiency of up to 92.3% for tetracycline (TC) within 30 minutes, 

which is 1.85 times higher than CoP@C/NF/PMS system [120]. 
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3.4. Composite System Activation 

Through the synergistic effect of electrochemistry and metal-based catalysts, PMS-AOPs can be efficiently 

activated to achieve significant degradation of organic pollutants [121]. Manganese oxide-carbon modified 

graphite felt (MnO-C/GF) was used as an anode to activate PMS under electrochemical synergism. The degradation 

rate constants (k) of tetracycline were increased by a factor of 4.54 and 2.38 compared to GF and MnO/GF, 

respectively [121]. 

The system combining metal-based catalysts with photocatalytic Fenton reactions exhibits excellent PMS 

activation performance [122, 123]. A study used Mn/Fe bimetal-doped graphitic carbon nitride (MnFe-CN-50) as a 

catalyst in a visible light/PMS synergistic system, the degradation efficiencies of tetracycline were 2.6 times and 1.3 

times higher than those in standalone photocatalysis or Fenton-like reactions [124]. 

The triple synergistic effect of photocatalysis, electrochemistry, and metal-based catalysts not only significantly 

improves the degradation efficiency of pollutants by enhancing ROS generation, but also promotes energy 

recovery [125]. A study achieved simultaneous activation of PMS and H2O2 using sulfur-doped CuMnO/carbon felt 

cathodes (Fig. 9), and the removal rate of rifampicin and TOC were 96.9% and 78.1%, respectively, within 15 

minutes [126]. This synergistic effect enables the dual functions of “wastewater purification + power generation”, 

showing great promise for energy-self-sufficient wastewater treatment and energy recovery. 

 

Figure 9: Simultaneous activation of PMS and H₂O₂ by S-CuMnO/CF [126]. 

While PMS-AOPs exhibit high degradation efficiency, their economic viability depends on catalyst recyclability 

and energy input optimization. Future studies should focus on low-cost catalysts (e.g., waste-derived materials) 

and hybrid systems (e.g., solar-driven activation) to enhance sustainability [127-130]. 

4. Critical Parameters that Affect PMS-AOPs Performance 

4.1. Initial pH of Wastewater 

The pH of wastewater significantly influences PMS performance by regulating the generation pathways of 

reactive species, the surface charge of catalysts, and the speciation of pollutants [131]. Under acidic conditions, 

metal ions exhibit higher activation efficiency toward PMS in homogeneous systems, as low pH promotes metal 

dissolution and cycling (such as Fe3+/Fe2+) [132]. Here, SO4·- serves as the dominant reactive species, 

demonstrating strong reactivity toward organic compounds. In neutral to weakly alkaline conditions, SO4·- can 

hydrolyze to form ·OH, establishing a dual-radical synergistic system that broadens the degradation scope of 

pollutants [17]. Under strongly alkaline conditions, non-radical pathways (dominated either by direct nucleophilic 
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attack or 1O2) may prevail, whereas accelerated spontaneous decomposition of PMS leads to inefficient 

consumption [133]. Furthermore, pH variations affect the zeta potential of carbon-based catalysts, thereby 

altering their adsorption behavior toward PMS and pollutants [134]. Therefore, pH optimization is essential based 

on the activation mechanism and target pollutant characteristics. 

4.2. Reaction Temperature 

High temperatures can enhance PMS activation rates by accelerating molecular motion. It is widely observed 

that pollutant degradation rates increase linearly following the Arrhenius equation within 20 – 80°C [19]. 

Breakthrough research reveals a unique freezing concentration effect in cryogenic zones (-40 – 0°C), where direct 

PMS oxidation dominates pollutant degradation [135, 136]. For eight representative pollutants including Acid 

Yellow 17, removal efficiencies exhibit a rising-falling pattern as temperature increases from -40°C to 0°C, peaking 

at -20°C. Overall, across the full temperature spectrum (-40 – 80°C), degradation curves display an N-shaped trend 

(Fig. 10), with all three stages conforming to pseudo-first-order kinetics [137]. This demonstrates temperature's 

nonlinear modulation of reaction pathways and provides new strategies for wastewater treatment in cold regions. 

 

Figure 10: Trend of organic pollutants within -40 – 80°C in PMS-AOPs system [137]. 

4.3. PMS Dosage and Catalyst Loading 

The PMS dosage is a critical parameter determining both the upper limit of reactive species generation and 

process economics. At low dosages, the pollutant degradation rate typically increases linearly with PMS 

concentration, conforming to the pseudo-first-order kinetic model [138]. When PMS is in excess, degradation 

efficiency may plateau or even decline due to triggered self-quenching reactions of PMS (Eqs. (4), (5)) and/or 

competitive consumption of SO4·-/·OH by excessive PMS that competes with target pollutants (Eqs. (6), (7)) [139]. 

Additionally, accumulation of reaction byproducts can suppress radical chain reactions. 

 SO4
·− + SO4

·− → S2O8
2−· (4) 

 SO4
·− + S2O8

2− → SO4
2− + S2O8

2−· (5) 

 SO4
·− + HSO5

− → SO5
·− + HSO4

− (6) 

 SO4
·− + HSO5

− → SO5
·− + HSO4

− (7) 

The catalyst loading directly influences the number of active sites and mass transfer efficiency. At low loadings, 

the degradation rate increases with catalyst amount through enhanced PMS activation by additional active sites 
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[140]. However, excessive loading often reduces efficiency through induced particle agglomeration diminishing 

effective surface area, amplified light shielding in photocatalytic systems, or surplus catalyst acting as electron 

sinks that impede pollutant oxidation in non-radical pathways [141]. Furthermore, overdosing metal-based 

catalysts exacerbates ion leaching risks. 

4.4. Inorganic Ions and Natural Organic Matter 

With advances in activation technologies and materials, the stability of reaction systems has progressively 

improved. These systems now demonstrate significant tolerance and buffering capacity toward inorganic anions 

(PO4
-, HPO4

2-, HCO3
–, NO3

–, Cl– at 1 – 10 mM) and humic acid (HA), exerting generally negligible effects on PMS 

activation as shown in Fig. (11) [114, 142].  

The slight inhibition by H2PO4⁻ may primarily stem from its reaction with radicals forming less reactive H2PO4· 

species (Eqs. (8), (9)) [143]. For HCO3⁻, observed inhibition arises through dual mechanisms: (i) consuming reactive 

species to generate lower-activity radicals (HCO3·/CO3⁻·; Eqs. (10), (11)), (ii) pH buffering toward weak alkalinity that 

alters pollutant degradation pathways [144]. When HA exhibits inhibitory effects, potential causes include surface 

adsorption blocking catalyst active sites or competitive consumption of reactive species [114]. Conversely, HA may 

enhance degradation via reductive functional groups (e.g., phenolic hydroxyls) reacting with PMS to generate 

additional reactive species [145]. 

 HPO4
2− + SO4

·− → SO4
2− + HPO4

·− (8) 

 HPO4
2− +· OH → OH− + HPO4

·− (9) 

 HCO3
− + SO4

·− → SO4
2− + HCO3 · (10) 

 HCO3
− +· OH → CO3

−· + H2O (11) 

 

Figure 11: Effect of inorganic anions and HA on sulfafurazole removal (The negative x-axis indicates the adsorption stage) 

[114]. 

Low concentrations of Cl⁻ exhibit minimal impact on PMS-AOP degradation efficiency, but appropriate Cl⁻ 

concentrations can directly activate PMS to generate reactive species. In Cl⁻/PMS systems without catalysts, the 

primary oxidizing agents are typically hypochlorous acid (HOCl) and reactive chlorine species (Cl·) formed through 
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direct oxidation between Cl⁻ and PMS [145, 146]. Notably, a study demonstrated 100.0% degradation efficiency for 

ammonium nitrogen (NH4
+-N) and 97% removal of total nitrogen (TN) within 15 minutes in seawater aquaculture 

wastewater using a Cl⁻/PMS system at pH 8.0 [147]. Moreover, introducing Cl⁻ significantly enhances the activation 

performance of catalyst/PMS systems. Research reveals that in PMS systems, Cl⁻ promotes the generation of Fe 

(IV)=O species on single-atom Fe-CNs catalysts, increasing sulfamethoxazole degradation by 2.97-fold and 

boosting PMS utilization efficiency by 92%. At the same time, this approach effectively prevents the formation of 

chlorinated organic by-products [148]. 

In PMS systems containing multiple halogens, the presence of X₁⁻ promotes the transformation of HOX1/OX1
− 

into HOX2/OX2
− species with higher oxidizing capacity. Environmental temperature significantly modulates the 

conversion of X⁻ to HOX/OX⁻ in X⁻/PMS systems. Research demonstrates that Cl⁻ substantially enhances 

degradation efficiency across tested temperature ranges [137], whereas Br⁻ addition mediates the transformation 

of primary active species from HOCl/OCl⁻ to HOBr/OBr⁻. This shift amplifies the oxidizing capacity of X⁻/PMS 

systems, with performance exhibiting positive correlation to temperature elevation [149]. 

Therefore, we boldly speculate that when treating halogenated organic wastewater, PMS may be able to 

produce activity without additional activation conditions in a non-catalytic system. And it tends to degrade organic 

compounds with electron-donating properties, low molecular polarity, and low oxygen content [150]. This can 

effectively solve problems such as resource waste and high treatment costs. 

4.5. Reaction Time 

Reaction time is a critical parameter determining the extent of target pollutant degradation and the 

operational efficiency of the system. In PMS-AOPs, pollutant degradation typically follows pseudo-first-order or 

pseudo-second-order kinetic models [151, 152]. Degradation efficiency often increases rapidly with time during 

the initial reaction stage, peaks, and then stabilizes or slightly declines [24, 28]. In the initial phase, sufficient 

reactive species (such as 1O2, SO4·⁻, and ·OH) and available active sites on the catalyst ensure a significant increase 

in pollutant degradation rate over time [94, 101].  

The reaction time required varies significantly depending on the activation method, influenced by the 

activation efficiency, the rate of reactive species generation, and the inherent degradability of the pollutant itself. 

Energy-assisted activation (e.g., thermal, photocatalytic, electrochemical and plasma) and efficient heterogeneous 

metal/carbon-based catalysts can typically achieve high degradation efficiency (>90%) within a relatively short 

timeframe (<30 minutes, often even <10 minutes) [24, 34, 50, 120, 124]. In contrast, some homogeneous systems 

or reactions under specific conditions may require longer durations (e.g., >120 minutes) to achieve satisfactory 

removal [15]. Determining the minimum effective time required for a specific system to reach the target removal 

efficiency is crucial for optimizing process economics. 

Excessively long reaction times not only increase energy consumption and operational costs but may also lead 

to negative effects, primarily due to reactive species quenching, catalyst deactivation, and accumulation of by-

products [139-141]. In practical applications, kinetic studies are necessary to determine the optimal reaction time 

required to achieve the expected removal rate. Selecting activation methods capable of achieving efficient 

degradation within a shorter timeframe is preferable [153]. A balance must be struck between degradation 

efficiency, energy consumption, treatment costs, and the potential risk of secondary pollution. 

5. Working Mechanism of PMS 

PMS activation primarily proceeds via three pathways for oxidative degradation of organic pollutants: radical-

driven (·OH, SO4·-, and O₂·-), non-radical-mediated (¹O₂, electron transfer, or high-valent metal species), and 

synergistic effects. The contributions of the three pathways depend on reaction conditions (temperature, pH, PMS 

concentration), catalyst composition and structure, pollutant properties, and analytical approaches [154]. 

Researchers typically employ radical quenching experiments, electron paramagnetic resonance, X-ray 

photoelectron spectroscopy, electrochemical analysis, and density functional theory (DFT) calculations to identify 

specific mechanisms [74]. 
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The radical pathway primarily cleaves the O-O bond of PMS via electron transfer, generating SO4·- and ·OH. 

Concurrently, self-decomposition of PMS produces O2·- and 1O2, which collectively degrade pollutants [155]. For 

biochar-activated PMS systems, radical pathways dominate with SO4·- and ·OH contributing approximately 70% to 

antibiotic degradation, O2·- exhibiting minimal contribution, while non-radical processes account for 15 – 20% 

[156]. Non-radical pathways (e.g., interfacial direct electron transfer) circumvent radical diffusion losses, 

demonstrating superior efficacy in complex water matrices [133]. In Zhou's study, it was found that steady-state 

concentration of 1O2 is 4 orders of magnitude higher than radical ·OH [157]. It suggests that the dominant 

contribution of 1O2 to BPA removal. Advancing research reveals that in PMS systems with metal ions, oxidative 

degradation is primarily mediated by metal-peroxo complexes rather than conventional species (·OH, SO4·-, high-

valent metals, or 1O2) [72, 158]. The mechanism of action is as follows: first, PMS adsorbs onto the catalyst surface 

to form a metastable intermediate (PMS*); second, internal electron transfer occurs from the catalyst to the PMS 

molecule; finally, external electron transfer occurs from PMS* to pollutants [159]. In most cases, radical and non-

radical pathways exhibit synergy in the PMS system, as shown in Fig. (12). 

 

Figure 12: Mechanism of PMS activation on the surface of Cu-Co-TiO2 catalyst [160]. 

6. Proposed Study Directions in the Near Future 

(1)  Develop carbon-based catalysts with defect engineering and single-atom doping synergistic regulation to 

improve catalytic stability and avoid the risk of metal ion leaching from metal-based materials. 

(2)  The structure, chemical behavior, and reaction mechanisms of critical oxidant PMS* in non-radical electron 

transfer pathways require further elucidation. Notably, pollutant degradation may originate not only from 

oxidants but also from high-energy catalyst states (e.g., high-valent metals), warranting investigation into 

catalytic active intermediates. 

(3)  Laboratory-scale validation of PMS catalyst tolerance toward inorganic anions and natural organics remains 

inadequate. Real-wastewater interference mechanisms demand clarification through in situ techniques 

(Raman/electron paramagnetic resonance) to decipher dynamic interactions between reactive species and 

matrices, enhancing complex-water adaptability. 

(4)  Although cryogenic “freezing concentration effects” intensify direct PMS oxidation, engineering application 

faces feasibility challenges. Development of freeze-resistant catalysts and optimized reactor mass-transfer 

designs is imperative. 

(5)  Waste-derived catalysts (e.g., spent lithium batteries, iron oxide ores) enable “waste-treats-waste” resource 

recovery. However, composition controllability and toxicity residuals necessitate standardized recycling-

activation process chains. 
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(6)  Deliberate regulation of radical/non-radical pathways requires deeper exploration. Transition from passive 

mechanistic analysis to proactive catalytic process design is crucial for advancing engineered PMS-AOPs 

applications. 

7. Conclusions 

The use of PMS in the treatment of refractory organic wastewater is comprehensively reviewed herein from 

some critical aspects, including the characteristics of PMS-AOPs, activation of PMS, effect parameters of PMS-

AOPs, working mechanism of PMS, and study direction in the near future. 

(1)  PMS-AOPs show significant superiority in treating refractory organic wastewater relying on the production of 

reactive free radicals (SO4·- and ·OH) and non-radical species (1O2), and wide pH operating range. 

(2)  PMS activation methods include energy-assisted activation (thermal, photocatalytic, electrochemical and 

plasma activation), metal-based materials activation (homogeneous/heterogeneous), carbon-based material 

activation, and synergistic activation of composite systems. The construction of a stable activation system with 

low secondary pollution risk (especially low cobalt/cobalt-free) and high water quality adaptability is important 

to achieving efficient treatment. 

(3)  The degradation efficiency is influenced by key parameters, including the initial pH of the wastewater, reaction 

temperature, PMS dosage, catalyst loading, coexisting inorganic ions and natural organic matter, and reaction 

time. These factors simultaneously influence the reaction process by regulating the surface properties of the 

catalyst and the generation of active species. Determining optimal reaction conditions is key to balancing the 

trade-offs among degradation efficiency, energy consumption, treatment cost, and secondary contamination 

risk. 

(4)  PMS activation primarily occurs through three pathways: radical-mediated, non-radical-mediated, and 

synergistic interactions between them. The non-radical pathway (particularly direct electron transfer mediated 

by 1O2 and PMS*) demonstrates superior interference resistance in complex aquatic environments.  

(5)  Future research should focus on the development of highly stable catalysts, the elucidation of the non-radical 

electron transfer mechanism, the enhancement of the adaptability to complex water qualities, and the 

exploration of the PMS-AOPs’ application potential in low-temperature/halogenated wastewater scenarios. 
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