Comparative Analysis and Optimization of Separation Technique of Carboxylic Acid-Water Mixture Using Aspen Plus
Abstract - 18
PDF

Keywords

Water
Acetic acid
Extractive distillation
Azeotropic distillation

How to Cite

1.
Prabhakar A, Raghav S, Samridhi, Mishra Y. Comparative Analysis and Optimization of Separation Technique of Carboxylic Acid-Water Mixture Using Aspen Plus. J. Chem. Eng. Res. Updates. [Internet]. 2025 Nov. 3 [cited 2025 Nov. 4];12:69-83. Available from: https://www.avantipublishers.com/index.php/jceru/article/view/1634

Abstract

Acetic acid (ethanoic acid) is widely employed as a food preservative, a versatile solvent, and as an intermediate in the synthesis of various industrial chemicals. Recent studies have emphasized process intensification strategies for its separation. Conventional distillation, though straightforward, requires a large number of trays and significant energy input. In contrast, azeotropic and extractive distillation offer improved efficiency with fewer stages and lower energy demand. This study investigates the separation of acetic acid–water mixtures using azeotropic and extractive distillation. Among the azeotropic agents, isobutyl acetate demonstrated lower energy consumption and reduced total annual cost (TAC) compared to vinyl acetate, while achieving high product purity (98.6% acetic acid and 99% water). For extractive distillation, methyl tert-butyl ether (MTBE) exhibited superior performance, yielding 99% purity for both acetic acid and water with minimum energy requirement and solvent usage, outperforming ethyl acetate, which achieved 98.2% acetic acid and 99% water. In comparison, conventional distillation provided only 92.1% acetic acid and 86.4% water. Overall, extractive distillation with MTBE proved to be the most efficient and cost-effective option for acetic acid purification.

https://doi.org/10.15377/2409-983X.2025.12.5
PDF

References

Pal P, Nayak J. Acetic acid production and purification: critical review towards process intensification. Sep Purif Rev. 2017; 46(1): 44-61. https://doi.org/10.1080/15422119.2016.1185017

Gadkari S, Mirza Beigi BH, Aryal N, Sadhukhan J. Microbial electrosynthesis: is it sustainable for bioproduction of acetic acid? RSC Adv. 2021; 11(17): 9921-32. https://doi.org/10.1039/D1RA00920F

Rinaudo M, Pavlov G, Desbrières J. Influence of acetic acid concentration on the solubilization of chitosan. Polymer (Guildf). 1999; 40(25): 7029-32. https://doi.org/10.1016/S0032-3861(99)00056-7

Singh V, Singh V, Sehgal A, Parashari A, Sodhani P, Satyanarayana L. Early detection of cervical cancer through acetic acid application – an aided visual inspection. Singapore Med J. 2001; 42(8): 351-4.

De Vlieger DJM, Lefferts L, Seshan K. Ru decorated carbon nanotubes – a promising catalyst for reforming bio-based acetic acid in the aqueous phase. Green Chem. 2014; 16(2): 864-72. https://doi.org/10.1039/c3gc41922c

Sankaranarayanan R, Wesley R, Somanathan T, Dhakad N, Shyamalakumary B, Amma NS, et al. Visual inspection of the uterine cervix after the application of acetic acid in the detection of cervical carcinoma and its precursors. Cancer. 1998; 83(10): 2150-6. https://doi.org/10.1002/(SICI)1097-0142(19981115)83:10<2150::AID-CNCR13>3.0.CO;2-0

Chen JH, Liu QL, Zhu AM, Zhang QG. Dehydration of acetic acid by pervaporation using SPEEK/PVA blend membranes. J Membr Sci. 2008; 320(1-2): 416-22. https://doi.org/10.1016/j.memsci.2008.04.034

Durmaz-Hilmioglu N, Yildirim AE, Sakaoglu AS, Tulbentci S. Acetic acid dehydration by pervaporation. Chem Eng Process Process Intensif. 2001; 40(3): 263-7. https://doi.org/10.1016/S0255-2701(00)00122-7

Ray SK, Sawant SB, Joshi JB, Pangarkar VG. Dehydration of acetic acid by pervaporation. J Membr Sci. 1998; 138(1): 1-7. https://doi.org/10.1016/S0376-7388(97)00210-X

Huang J, Tu ML, Wang YC, Li CL, Lee KR, Lai JY. Dehydration of acetic acid by pervaporation through an asymmetric polycarbonate membrane. Eur Polym J. 2001; 37(3): 527-34. https://doi.org/10.1016/S0014-3057(00)00135-X

Krishna Rao KSV, Vijaya Kumar Naidu B, Subha MCS, Sairam M, Mallikarjuna NN, Aminabhavi TM. Novel carbohydrate polymeric blend membranes in pervaporation dehydration of acetic acid. Carbohydr Polym. 2006; 66(3): 345-51. https://doi.org/10.1016/j.carbpol.2006.03.024

Morales-Vera R, Crawford J, Dou C, Bura R, Gustafson R. Techno-economic analysis of producing glacial acetic acid from poplar biomass via bioconversion. Molecules. 2020; 25(18): 4328. https://doi.org/10.3390/molecules25184328

Patil KD, Kulkarni BD. Review of recovery methods for acetic acid from industrial waste streams by reactive distillation. J Water Pollut Purif Res. 2014; 1(2): 13-8.

Usman MR, Hussain SN, Asghar HMA, Sattar H, Ijaz A. Liquid-liquid extraction of acetic acid from an aqueous solution using a laboratory scale sonicator. J Qual Technol Manag. 2011; 7(2): 115-21.

Li S, Huang D. Simulation and analysis on multiple steady states of an industrial acetic acid dehydration system. Chin J Chem Eng. 2011; 19(6): 983-9. https://doi.org/10.1016/S1004-9541(11)60081-5

Raza W, Wang J, Yang J, Tsuru T. Progress in pervaporation membranes for dehydration of acetic acid. Sep Purif Technol. 2021; 262: 118338. https://doi.org/10.1016/j.seppur.2021.118338

Başlıoğlu B, Çehreli S. Quaternary phase equilibrium of water–carboxylic acid mixture (formic–propionic acid or acetic–propionic acid)–solvent liquid systems at 298.15 K. Fluid Phase Equilib. 2011; 312: 85-92. https://doi.org/10.1016/j.fluid.2011.09.014

İnce E. Liquid–liquid equilibria of the ternary system water + acetic acid + dimethyl succinate. Fluid Phase Equilib. 2005; 238(1): 33-8. https://doi.org/10.1016/j.fluid.2005.09.013

Marti ME. Solvent modification effect on the physical and chemical extraction of acetic acid. Sep Sci Technol. 2016; 51(11): 1806-16. https://doi.org/10.1080/01496395.2016.1178286

N SR, Kumaresan CPR. Aerobic treatment of distillery wastewater in a three-phase fluidized bed biofilm reactor. Int J Chem Eng Res. 2009; 1(1): 13-20. Available from: https://www.ripublication.com/ijcher1/ijcherv1n1_2.pdf

Geeta Chittala MA, GSP S. Chemoautotrophic activated carbon oxidation: an advanced oxidation process for the reduction of sulphate in pharmaceutical effluent. Int J Life Sci Biotechnol Pharm Res. 2012; 1(2): 324-7.

Dhokpande SR, Kulkarni SJ, Kaware JP. A review on research on application of trickling filters in removal of various pollutants from effluent. Int J Eng Sci Res Technol. 2014; 3: 359-65.

Huang J, Tu ML, Wang YC, Li CL, Lee KR, Lai JY. Dehydration of acetic acid by pervaporation through an asymmetric polycarbonate membrane. Eur Polym J. 2001; 37(3): 527-34. https://doi.org/10.1016/S0014-3057(00)00135-X

Kulkarni SJ, Kherde PM. A review on advanced oxidation method for waste water treatment. Int J Eng Sci Manage Res. 2015; 2(8): 33-8.

Amale P, Kulkarni S, Kulkarni K. A review on research for industrial wastewater treatment with special emphasis on distillery effluent. Int J Electr Electron Eng. 2014; 1(9): 1-4.

Pătruţ C, Bîldea CS, Liţă I, Kiss AA. Cyclic distillation – design, control and applications. Sep Purif Technol. 2014; 125: 326-36. https://doi.org/10.1016/j.seppur.2014.02.006

Golob J, Grilc V, Zadnik B. Extraction of acetic acid from dilute aqueous solutions with trioctylphosphine oxide. Ind Eng Chem Process Des Dev. 1981; 20(3): 433-5. https://doi.org/10.1021/i200014a004

Kuo Y, Gregor HP. Acetic acid extraction by solvent membrane. Sep Sci Technol. 1983; 18(5): 421-40. https://doi.org/10.1080/01496398308060285

Sano T. Separation of acetic acid-water mixtures by pervaporation through silicalite membrane. J Membr Sci. 1997; 123(2): 225-33. https://doi.org/10.1016/S0376-7388(96)00224-4

Alghezawi N, Şanlı O, Aras L, Asman G. Separation of acetic acid–water mixtures through acrylonitrile grafted poly(vinyl alcohol) membranes by pervaporation. Chem Eng Process Process Intensif. 2005; 44(1): 51-8. https://doi.org/10.1016/j.cep.2004.03.007

Yang B, Li Y, Gong N, Cao X, Wang S, Sun C. Study of molecular association in acetic acid-water binary solution by Raman spectroscopy. Spectrochim Acta A Mol Biomol Spectrosc. 2019; 213: 463-6. https://doi.org/10.1016/j.saa.2018.08.029

Miranda NT, Maciel Filho R, Wolf Maciel MR. Comparison of complete extractive and azeotropic distillation processes for anhydrous ethanol production using Aspen Plus. Chem Eng Trans. 2020; 80: 43-8. https://doi.org/10.3303/CET2080008

Murali N, Srinivas K, Ahring BK. Biochemical production and separation of carboxylic acids for biorefinery applications. Fermentation. 2017; 3(2): 22. https://doi.org/10.3390/fermentation3020022

Agreda VH, ZJ. Acetic acid and its derivatives. Boca Raton: CRC Press; 1993.

Talnikar VD, Mahajan YS. Recovery of acids from dilute streams: a review of process technologies. Korean J Chem Eng. 2014; 31: 1720-31.

Rodríguez M, González-Muñoz MJ, Luque S, Alvarez JR, Coca J. Extractive ultrafiltration for the removal of carboxylic acids. J Membr Sci. 2006; 274(1-2): 209-18. https://doi.org/10.1016/j.memsci.2005.08.012

Ingale MN, Mahajani VV. Recovery of acetic acid and propionic acid from aqueous waste stream. Sep Technol. 1994; 4(2): 123-6. https://doi.org/10.1016/0956-9618(94)80014-6

Ingale MN, Mahajani VV. Recovery of acetic acid and propionic acid from aqueous waste stream. Sep Technol. 1994; 4(2): 123-6.

Wisniewski M, Pierzchalska M. Recovery of carboxylic acids C1–C3 with organophosphine oxide solvating extractants. J Chem Technol Biotechnol. 2005; 80(12): 1425-30. https://doi.org/10.1002/jctb.1348

Keshav A, Chand S, Wasewar KL. Recovery of propionic acid from aqueous phase by reactive extraction using quaternary amine (Aliquat 336) in various diluents. Chem Eng J. 2009; 152(1): 95-102. https://doi.org/10.1016/j.cej.2009.03.037

Cai W, Zhu S, Piao X. Extraction equilibria of formic and acetic acids from aqueous solution by phosphate-containing extractants. J Chem Eng Data. 2001; 46(6): 1472-5. https://doi.org/10.1021/je010117i

Keshav A, Wasewar KL. Back extraction of propionic acid from loaded organic phase. Chem Eng Sci. 2010; 65(9): 2751-7. https://doi.org/10.1016/j.ces.2010.01.010

Chien IL, Zeng KL, Chao HY, Liu JH. Design and control of acetic acid dehydration system via heterogeneous azeotropic distillation. Chem Eng Sci. 2004; 59(21): 4547-67. https://doi.org/10.1016/j.ces.2004.06.041

Bianchi CL, Ragaini V, Pirola C, Carvoli G. A new method to clean industrial water from acetic acid via esterification. Appl Catal B. 2003; 40(2): 93-9. https://doi.org/10.1016/S0926-3373(02)00144-3

Gomes GJ, Zalazar MF, Lindino CA, Scremin FR, Bittencourt PRS, Costa MB, et al. Adsorption of acetic acid and methanol on H-Beta zeolite: an experimental and theoretical study. Microporous Mesoporous Mater. 2017; 252: 17-28. https://doi.org/10.1016/j.micromeso.2017.06.008

Schlosser Š, Kertész R, Marták J. Recovery and separation of organic acids by membrane-based solvent extraction and pertraction. Sep Purif Technol. 2005; 41(3): 237-66. https://doi.org/10.1016/j.seppur.2004.07.019

Yu L, Guo Q, Hao J, Jiang W. Recovery of acetic acid from dilute wastewater by means of bipolar membrane electrodialysis. Desalination. 2000; 129(3): 283-8. https://doi.org/10.1016/S0011-9164(00)00068-0

Kentish S. Innovations in separations technology for the recycling and re-use of liquid waste streams. Chem Eng J. 2001; 84(2): 149-59. https://doi.org/10.1016/S1385-8947(01)00199-1

Raza W, Wang J, Yang J, Tsuru T. Progress in pervaporation membranes for dehydration of acetic acid. Sep Purif Technol. 2021; 262: 118338. https://doi.org/10.1016/j.seppur.2021.118338

Patil K, Patil KB. Review of recovery methods for acetic acid from industrial waste streams by reactive distillation. J Water Pollut Purif Res. 2014; 13-8.

Karunanithi S, Kapoor A, Senthil Kumar P, Balasubramanian S, Rangasamy G. Solvent extraction of acetic acid from aqueous solutions: a review. Sep Sci Technol. 2023; 58(11): 1985-2007. https://doi.org/10.1080/01496395.2023.2225734

Yan J, Li X, Meng M, Zhao C, Li J, Sun L. Mechanistic investigation of isobutanol/isobutyl acetate separation by extraction using low-transition temperature mixtures. Ind Eng Chem Res. 2023; 62(33): 13223-34. https://doi.org/10.1021/acs.iecr.3c02200

Polkovnichenko AV, Chelyuskina TV. Distillation separation of the isobutyl acetate–acetic acid–isoamyl acetate industrial mixture. Theor Found Chem Eng. 2023; 57(4): 503-14. https://doi.org/10.1134/S0040579523040413

Cheng Y, Zhang Z, Zhu K, Wang J, Meng Y, Li M, et al. Mechanism analysis and performance comparison of extractive distillation with different extractants for separating methyl tert-butyl ether/methanol mixture. Sep Purif Technol. 2025; 354: 129349. https://doi.org/10.1016/j.seppur.2024.129349

Unlüsu B, Yıldırım R. Extractive distillation of isobutyl alcohol and isobutyl acetate using dimethyl sulfoxide: process design and intensification. Chem Eng Technol. 2024; 47(12): e202300457. https://doi.org/10.1002/ceat.202300457

Li S, Huang D. Simulation and analysis on multiple steady states of an industrial acetic acid dehydration system. Chin J Chem Eng. 2011; 19(6): 983-9. https://doi.org/10.1016/S1004-9541(11)60081-5

Miao X, Zhang H, Wang T, He M. Liquid–liquid equilibria of the ternary system water + acetic acid + methyl tert-butyl ether. J Chem Eng Data. 2007; 52(3): 789-93. https://doi.org/10.1021/je060409p

Chien IL, Zeng KL, Chao HY, Liu JH. Design and control of acetic acid dehydration system via heterogeneous azeotropic distillation. Chem Eng Sci. 2004; 59(21): 4547-67. https://doi.org/10.1016/j.ces.2004.06.041

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2025 Ashok Prabhakar, Shivam Raghav, Samridhi, Yashi Mishra

Downloads

Download data is not yet available.