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Abstract: This paper studies the spatial behavior of the steady state vibrations in a cylinder made of a dual-phase-lag 
anisotropic rigid conductor material. We analyze the influence of the lagging model upon the spatial behavior of the 
amplitude of vibration along the axis of the cylinder, providing the explicit expressions of the decay rate and of the 
corresponding critical frequency in terms of the coefficients of the considered constitutive equation (or delay times). In 
fact, for the amplitude of the harmonic vibrations we obtain some exponential decay estimates of Saint-Venant type, 
provided the frequency of vibration is lower than a critical value. This gives information on the thermal penetration depth 
of the steady state vibrations describing the heat affected zone. Illustrative examples are given for the class of lagging 
behavior models that are thermodynamically compatible.  
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1. INTRODUCTION 

The physical foundation and microscale heat-
transfer mathematical models, describing the lagging 
response in times comparable to the phase lags 
characterizing the microstructural interactions, have 
been presented in a series of papers by Tzou [1-4]. 
The refined structure of the lagging response is 
depicted by means of the high-order effects in 
correlation with the heat-transfer models in 
micro/nanoscale (like the systems with multiple energy 
carriers, including the bioheat transfer and mass 
interdifussion) in [3]. It is discussed in [4] the concept of 
thermal penetration depth for transient processes 
which limits the heat-affected zone as a finite domain. 
The heat-affected zone grows in the transient process 
of heat transport. The way in which the heat-affected 
zone enlarges in the time-history, however, is an 
unknown to be determined. A study on this question 
can be found in the paper by Chiriţă [5].  

Throughout this paper we assume that the supply 
terms are absent and, according with the lagging 
behavior models, we further consider the basic energy 
equation  

   
!qi,i (x, t) = a(x) "T

"t
(x, t),            (1) 

coupled with the following constitutive equation  
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Here iq  are the components of the heat flux vector, 
  
T,i  

represents the gradient of the temperature variation, a  
is the specific heat and 

 
kij  is the conductivity tensor 

and   a0 ,   a1 , ...,  an  and   b0 ,   b1 , ...,  bm  are real 
parameters. Concerning this last constitutive equation 
we note that when  

  

a0 = 1, a1 = 1
1!
! q , ..., an = 1

n!
! q

n ,

b0 = 1, b1 = 1
1!
!T , ..., bm = 1

m!
!T

m ,
        (3) 

we recover the constitutive equation proposed by Tzou 
[1]–[4], namely,  
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                  (4) 

where 
  
! q " 0  and   !T " 0  are the delay times. 

The spatial behavior of the transient solutions of the 
mathematical model based on the equations (1) and (2) 
was studied by Chiriţă [5] and Chiriţă et al. [6], 
describing the depth of thermal penetration. In fact, it 
was established in [5] an influence domain result when 
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  m = n ±1 , while for   m = n  there have been established 
some exponential decay estimates of the Saint-Venant 
type. These results have been established without 
requiring any restriction on the delay times other than 
the positivity of the product between the coefficients of 
the time derivatives of greatest order. These results 
offer information on the depth of thermal penetration of 
a transient process in the dual-phase-lag model of heat 
transfer. 

The present paper aims to provide, through the use 
of the lagging behavior model described by the 
constitutive equation (2), a qualitative mathematical 
analysis of the problem concerning the penetration 
depth of a time harmonic thermal signal in an 
anisotropic and inhomogeneous rigid conductor. Thus, 
we consider a cylindrical domain filled by an anisotropic 
and inhomogeneous lagging behavior rigid conductor 
material and we assume that its lower base is 
subjected to a specific harmonic in time vibration. As it 
is known (see e. g. [7]-[10]) this is able to prove a 
steady state solution. Some characteristics of this 
steady state solution can be investigated by studying 
the spatial behavior of its amplitude with respect to the 
distance to the excited base of the cylinder. Such an 
investigation seems to be particularly interesting in 
view of the study of the nonlinear effects of thermal 
lagging (in terms of the high-order effects of  !T  and 

 
! q ) and also in view of the fact that (see [4], page  442 ) 

as the various orders of 
 
! q  and  !T  are gradually taken 

into account, which may result from increasing the 
number of carriers corresponding to higher-order 
effects in 

 
! q  and  !T . Moreover, when thermal lagging 

behaviors (the diffusive behavior and the wave-like 
behavior) are activated the spatial decay and the 
critical frequency values are affected. This contribution 
aims therefore to give information on the behavior of 
the amplitude of the steady state vibration and implicitly 
on the thermal penetration depth within the cylinder. In 
this connection we are able to introduce an appropriate 
functional associated with the amplitude in concern and 
to establish some exponential decay estimates in terms 
of the amplitude vibration, provided the frequency of 
vibration is lower than a critical value. The decay rate 
and the critical frequency are explicitly presented for 
the lagging behavior model based on the constitutive 
equation (4) when the values of approximation orders 

  (n, m)  make it compatible with the Second Law of 
Thermodynamics. 

We have to outline that the corresponding studies 
for the classical elastic and thermoelastic theories have 
been carried out in [7-13]. It is established there that, 
for appropriate values of the frequency of the harmonic 
excitation and by using some differential inequalities, 

the spatial decay of effects with distance from the 
excited end of the right cylinder is described by some 
exponential decay estimates of Saint Venant type. 

2. STEADY-STATE HARMONIC VIBRATIONS 

Throughout this paper we assume that the cylinder 

  C = D ! (0, L)  is made of a rigid conductor material with 
the lagging behavior and we suppose that the 
conductivity tensor is positive definite. We denote by 

  
Dx3

 the plane cross-section at distance   x3  from the 

base of the cylinder, assuming it sufficiently smooth to 
allow the application of the divergence theorem; 
moreover, with 

  
Cx3

 we denote the portion of cylinder 

between the cross-sections 
  
Dx3

 and  DL . The cylinder 

is free of heat supply and it is thermally insulated on its 
lateral surface and on the end situated in the plane 

  x3 = L . The cylinder is subjected to a harmonic 

perturbation on its base   x3 = 0  of the form  

  T (x1, x2 ,0, t) = h(x1, x2 )ei!t , (x1, x2 ) "D0 , t > 0,        (5) 

where  ! > 0  is the frequency of perturbation and 

  i = !1  is the imaginary unit and   h(x1, x2 )  is a 
prescribed smooth function. Then inside of cylinder  C  
we will have the following harmonic vibration  

   {T ,qr }(x, t) = {! ,Qr }(x)ei"t ,           (6) 

where the amplitude   {! ,Qr }  of the vibration is a 
solution of the boundary value problem defined by the 
differential system  

   
Qr ,r = !i"a# , for all x $C,           (7) 

   
P(n) i!( )Qr = "R(m) i!( ) krs#,s , for all x $C,        (8) 

with the boundary conditions  

   
!(x) = 0 on "Dx3

# (0, L)( )$ DL ,         (9) 

and  

  !(x1, x2 ,0) = h(x1, x2 ), (x1, x2 ) "D0 .       (10) 

In the above relations we have used the following 
notations  

  

P(n) i!( ) = a0 + a1 i!( ) + ...+ an i!( )n
,

R(m) i!( ) = b0 + b1 i!( ) + ...+ bm i!( )m
.
      (11) 
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We are interested into the spatial behavior of the 
amplitude    {! ,Qr }(x)  of the harmonic in time vibration 

   {T ,qr }(x, t) , as defined by (6), along the axis of the 
right cylinder. 

3. Mathematical analysis of the spatial behavior of 
the amplitude    {! ,Qr }(x)  

In order to study the spatial behavior of the 
amplitude    {! ,Qr }(x)  we introduce the following 
functional  

  
M (x3 ) = !

Dx3
" R(m) i#( ) k3s$,s$ + R(m) i#( )k3s$ ,s$%

&'
(
)* da, x3 > 0,

                (12) 

where a superposed bar denotes complex conjugate. 
Further, we note that the relations (8) and (12) imply  

  
M (x3 ) =

Dx3
! P(n) i"( )Q3# + P(n) i"( )Q3#$

%&
'
() da, x3 > 0,  (13) 

and hence, by means of the divergence theorem and 
the use of relations (7) and (9), we get  

  

! dM
dx3

(x3 ) = i" P(n) i"( ) ! P(n) i"( )#
$%

&
'( Dx3
) a**da

!
Dx3
) P(n) i"( )Qr* ,r + P(n) i"( )Qr*,r

#
$%

&
'( da.

    (14) 

Moreover, by using the relation (8), we have  

  
P(n) i!( )Qr" ,r + P(n) i!( )Qr",r = # R(m) i!( ) + R(m) i!( )$

%&
'
()krs",r" ,s ,

                (15) 

so that, the relation (14) becomes  

  

! dM
dx3

(x3 ) = i" P(n) i"( ) ! P(n) i"( )#
$%

&
'( Dx3
) a**da

+ R(m) i"( ) + R(m) i"( )#
$%

&
'( Dx3
) krs*,r* ,sda.

     (16) 

In view of the relation (11), we have  

  

i! P(n) i!( ) " P(n) i!( )#
$%

&
'( = "2! 2) (n) (! ),

R(m) i!( ) + R(m) i!( ) = 2*(m) (! ),
      (17) 

where  

....=)(
...,=)(

6
6

4
4

2
20)(

6
7

4
5

2
31)(

+!+!
+!+!

""""#
""""$

bbbb
aaaa

m

n      (18) 

Therefore, we have  

  
! dM

dx3

(x3 ) = !2" 2# (n) (" )
Dx3
$ a%%da + 2&(m) (" )

Dx3
$ krs%,r% ,sda.

                (19) 

At this stage we assume that  

  b0 > 0.               (20) 

It can be easily seen that for appropriate small enough 
values of !  we can make positive the following 
quantity  

  
!(m) (" ) = b0 # b2"

2 + b4"
4 # b6"

6 + ....       (21) 

In what follows we denote by  !0 > 0  the greatest value 
of !  so that  

  
!(m) (" ) > 0, for all 0 < " < "0 .       (22) 

Our analysis needs a discussion of the sign of the first 
integral term in the right hand side of the relation (19) 
and in this aim we consider the following cases: (i) 

  
! (n) (" )a # 0  for appropriate small enough values of !  

and for all   x !C , and (ii) 
  
! (n) (" )a > 0  for appropriate 

small enough values of !  and for all   x !C . 

Let us first consider the case (i) and we denote by  !
^

1  
the greatest value of !  so that  

   
! (n) (" )a # 0, for all 0 < " < "

$
1, x %C.      (23) 

Consequently, from the relation (19), we deduce that  

  
! dM

dx3

(x3 ) " 2#(m) ($ )
Dx3
% krs&,r& ,sda " 0,       (24) 

for all  0 < ! < min{!0 ,!
"

1} . 

Let us now consider the case (ii) and we denote by  !
~

1  
the greatest value of !  so that  

   
! (n) (" )a > 0, for all 0 < " < "

~
1, x #C.      (25) 

Furthermore, in view of the lateral boundary condition 
in (9), we have [14] 
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Dx3
! ",#" ,#da $ %

Dx3
! ""da,           (26) 

where !  is the lowest eigenvalue in the two-
dimensional clamped membrane problem for the cross 
section 

  
Dx3

. 

Now, if we use the estimate (26) into relation (19), we 
deduce that  

  
! dM

dx3

(x3 ) " 2 #(m) ($ ) !
amax

%& min

$ 2' (n) ($ )
(

)*
+

,- Dx3
. krs/,r/ ,sda,

                (27) 

where 
  
amax = Csup a  and 

  
! min = Cinf k(m)  and 

  
k(m)  is the 

lowest eigenvalue of the conductivity tensor  krs . 
Further, we note that the relation (18) implies  

  

!(m) (" ) #
amax

$% min

" 2& (n) (" ) = b0 # b2 +
amax

$% min

a1

'

()
*

+,
" 2 + b4 +

amax

$% min

a3

'

()
*

+,
" 4

# b6 +
amax

$% min

a5

'

()
*

+,
" 6 + ...,

                (28) 

and hence we can choose  ! = !
~

2  so that  

  
!(m) (" ) #

amax

$% min

" 2& (n) (" ) > 0 for all 0 < " < min{"0 ,"
~

1,"
~

2}.

                (29) 

Concluding, for the case (ii) we have  

  
! dM

dx3

(x3 ) " 2# ($ )
Dx3
% krs&,r& ,sda,         (30) 

where  

  
! (" ) = #(m) (" ) $

amax

%& min

" 2' (n) (" ) for 0 < " < min{"0 ,"
~

1,"
~

2}.

                (31) 

With such a choice for  ! (" )  as in (31) and by an 
integration with respect to   x3  variable over   [x3, L] , and 
the use of the end boundary condition (9) into relations 
(24) and (30), we obtain  

  
M (x3 ) ! 2" (# )

Cx3
$ krs%,r% ,sdv ! 0,         (32) 

recalling that 
  
Cx3

= D ! (x3, L) . In the above relation we 

have used  

  ! (" ) = #m (" ) for all 0 < " < min{"0 ,"
^

1},      (33) 

for the case (i), while  

  ! (" ) = # (" ) for all 0 < " < min{"0 ,"
~

1,"
~

2},      (34) 

for the case (ii). 

On the other side, by means of the Cauchy-Schwarz 
and the arithmetic-geometric mean inequalities, from 
the relation (13) we obtain  

  
M (x3 ) !

Dx3
" #P(n) (i$ )Q3 P(n) (i$ )Q3 +

1
#
%%

&

'
(

)

*
+ da,      (35) 

for every  ! > 0 . Furthermore, by means of relation (8), 
we have  

  

P(n) (i! )Q3 P(n) (i! )Q3 = R(m) (i! )R(m) (i! )"
#

$
% k3s&,sk3r& ,r( )

' R(m) (i! )R(m) (i! )"
#

$
% k3sk3s( ) &,r& ,r( ).

                (36) 

By combining the relations (26), (35) and (36), we 
obtain  

  
M (x3 ) !

Dx3
" #$ + 1

#%
&
'(

)
*+
,,r, ,r da,         (37) 

where  

  
!(" ) = R(m) (i" )R(m) (i" )

C
sup k3sk3s( ).       (38) 

At this instant we choose the parameter !  so that  

 
!" = 1

!#
$ ! = 1

#"
          (39) 

and hence the relation (37) becomes  

  
M (x3 ) ! 2

" min

#
$ Dx3
% krs&,r& ,sda, for all ' > 0.      (40) 

Concluding, from the relations (24), (30), (32) and (40), 
we obtain the first-order differential inequality  

  
M (x3 ) + !(" ) dM

dx3

# 0, for all x3 $(0, L),      (41) 

where  

  
!(" ) = 1

# (" )$ min

%(" )
&

.           (42) 
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When integrated, the differential inequality (41) 
furnishes the estimate  

  0 ! M (x3 ) ! M (0)e
"

x3
# ($ ) , for all x3 %(0, L),      (43) 

that expresses the exponential decay of the amplitude 

  {! ,Qr }  with respect to the distance   x3  at the loaded 
base. 

Thus, we have the following theorem.  

Theorem 1 Suppose that 
 
kij  is a positive definite 

tensor and the hypothesis (20) holds true. Then the 
spatial behavior of the amplitude   {! ,Qr }  of the 
harmonic vibration (6) is described as follows:  

(i) when the relation (23) is true we have the 
following exponential decay estimate  

  0 ! M (x3 ) ! M (0)e
"

x3
#1($ ) , for all x3 %(0, L),      (44) 

for all !  lower than the critical value 1c!  as defined by  

  ! c1 = min{!0 ,!
^

1}           (45) 

and  

  
!1(" ) = 1

#m (" )$ min

%(" )
&

;         (46) 

(ii) when the relation (25) holds true we have the 
following exponential decay estimate  

  0 ! M (x3 ) ! M (0)e
"

x3
#2 ($ ) , for all x3 %(0, L),      (47) 

for all !  lower than the critical value 2c!  as defined by  

  ! c2 = min{!0 ,!
~

1,!
~

2}           (48) 

and  

  
!2 (" ) = 1

# (" )$ min

%(" )
&

.         (49) 

Remark 1 We note that the hypothesis (20) is 
identically verified for the constitutive equation (4).  

Remark 2 A less accurate description of the 

exponentially decay phenomenon in question may be 
obtained using the inequality (26) into relation (19) in 
order to deduce that  

  
! dM

dx3

(x3 ) " 2#($ )
Dx3
% krs&,r& ,sda,         (50) 

where  

  
!(" ) = #(m) (" ) $

amax

%& min

" 2 ' (n) (" ) .       (51) 

Further, we note that the relation (18) implies  

  

!(" ) # b0 $ b2 +
amax

%& min

a1

'

()
*

+,
" 2 + b4 $

amax

%& min

a3

'

()
*

+,
" 4

$ b6 +
amax

%& min

a5

'

()
*

+,
" 6 + ...,

     (52) 

and let us denote by  !
*  the greatest value of !  so 

that  

  
!(" ) = #(m) (" ) $

amax

%& min

" 2 ' (n) (" ) > 0 for all 0 < " < " *.

                (53) 

When we couple the relations (40) and (50) we are 
lead to the counterpart of the estimates (44) and (47), 
namely  

  0 ! M (x3 ) ! M (0)e
"

x3
#*($ ) , for all x3 %(0, L),      (54) 

where now the critical frequency is estimated as  

  ! c
* = min{!0 ,! *},           (55) 

and  

  
!*(" ) = 1

#(" )$ min

%(" )
&

.         (56) 

4 EXAMPLES 

As an illustrative example we consider here the 
Tzou model described by the constitutive equation (4) 
and discussed within the thermomechanical 
compatibility analysis developed by Chiriţă et al. [15] for 
  n ! 4  and   m ! 4 . So in what follows we will indicate the 
decay rate and the critical frequency for the constitutive 
equation (4) when 

  (n, m) !{(0,0),(1,1), (2,2), (3,3), (4,4), (1,0), (2,1),

 (3,2), (4,3)} . The values   (m, n) !{(0,1),(1,2), (2,3), (3,4)}  
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can be treated in a similar way by using the idea 
expressed in Chiriţă et al. [15]. 

(I) The case   (n, m) = (0,0) : The decay estimates 
(44) and (54) hold true for any  ! > 0  with  

  
!1(" ) = !*(" ) = 1

#$ min C
sup k3sk3s( ).       (57) 

for indefinite sign of the constitutive coefficient a . 

(II) The case   (n, m) = (1,0) : When   a ! 0  in  C  the 
decay estimate (44) holds true for any  ! > 0  with 

  
!1(" ) = 1

#$ min C
sup k3sk3s( ),         (58) 

while when   a > 0  in  C  the decay estimate (47) holds 
true with  

  

!2 (" ) = 1

#$ min 1% " 2

" c
2

&

'
(

)

*
+

C
sup k3sk3s( ),       (59) 

and the critical frequency  

  
! c2 =

"# min

$ qamax

.             (60) 

We have to outline that the estimate (54) holds true 
with  !

*(" ) = !2 (" )  and   ! c
* = ! c2 . 

(III) The case   (n, m) !{(1,1),(2,1)} : When   a ! 0 , 
then the decay estimate (44) holds true for all  ! > 0  
with  

  
!1(" ) = 1

#$ min

1+ %T
2" 2( )

C
sup k3sk3s( ),       (61) 

while when   a > 0  the decay estimate (47) holds true 
with  

  

!2 (" ) = 1

#$ min 1% " 2

" c
2

&

'
(

)

*
+

1+ ,T
2" 2( )

C
sup k3sk3s( ),      (62) 

for the critical frequency  

  
! c2 =

"# min

$ qamax

.             (63) 

We have to outline that the estimate (54) holds true 

with  !
*(" ) = !2 (" )  and   ! c

* = ! c2 . 

(IV) The case   (n, m) = (2,2) : In the case when 
  a ! 0 , the decay estimate (44) holds true with  

  

!1(" ) = 1

#$ min 1% " 2

" c1
2

&

'
(

)

*
+

1+ 1
4
,T

4" 4&
'(

)
*+ C

sup k3sk3s( ),      (64) 

for the critical frequency  

  
! c1 = 2

"T

.             (65) 

While when   a > 0  the decay estimate (47) holds true 
with  

  

!2 (" ) = 1

#$ min 1% " 2

" c2
2

&

'
(

)

*
+

1+ 1
4
,T

4" 4&
'(

)
*+ C

sup k3sk3s( ),      (66) 

for the critical frequency  

  

! c2 = 1

1
2
"T

2 +
" qamax

#$ min

.           (67) 

We have to outline that the estimate (54) holds true 
with  !

*(" ) = !2 (" )  and   ! c
* = ! c2 . 

(V) The case   (n, m) = (3,2) : When   a ! 0  then the 
decay estimate (44) holds true with  

  

!1(" ) = 1

#$ min 1% 1
2
&T

2" 2'
()

*
+,

1+ 1
4
&T

4" 4'
()

*
+, C

sup k3sk3s( ),    (68) 

and the critical frequency is estimated as  

  
! c1 = min 2

"T

, 6
" q

#
$
%

&%

'
(
%

)%
.           (69) 

While when   a > 0  then the estimate (47) holds true 
with  

  

!2 (" ) =
1+ 1

4
#T

4" 4$
%&

'
() C

sup k3sk3s( )

*+ min 1, 1
2
#T

2 +
amax# q

*+ min

$

%
&

'

(
)" 2 +

amax# q
3

6*+ min

" 4
-

.
/
/

0

1
2
2

,      (70) 
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and the critical frequency is estimated as  

  

! c2 = min 2
"T

, 6
" q

,!
~

2

#
$
%

&%

'
(
%

)%
,         (71) 

where  !
~

2  is the smallest positive root of the algebraic 
equation  

  
1! 1

2
"T

2 +
amax" q

#$ min

%

&
'

(

)
*+ 2 +

amax" q
3

6#$ min

+ 4 = 0.       (72) 

The decay estimate (54) holds true with  

  

!*(" ) =
1+ 1

4
#T

4" 4$
%&

'
() C

sup k3sk3s( )

*+ min 1, 1
2
#T

2" 2 ,
amax# q

*+ min

" 2 1, 1
6
# q

2" 2
-

.
/
/

0

1
2
2

,      (73) 

and the critical frequency is estimated as  

  
! c

* = min 2
"T

,! *
#
$
%

&%

'
(
%

)%
,           (74) 

where  !
*  is the smallest positive root of the algebraic 

equation  
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6
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(VI) The case   (n, m) !{(3,3),(4,3)} : When   a ! 0  
then the decay estimate (44) holds true with  
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and the critical frequency is estimated as  
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while when   a < 0  then the decay estimate (47) holds 
true with  
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and the critical frequency is estimated as  
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where  !
~

2  is the smallest positive root of the algebraic 
equation  
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The decay estimate (54) holds true with  
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and the critical frequency is estimated as  
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where  !
*  is the smallest positive root of the algebraic 

equation  
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(VII) The case   (n, m) = (4,4) : In the case when 
  a ! 0  then the decay estimate (44) holds true with  
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and the critical frequency is estimated as  
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When   a > 0  then the decay estimate (47) holds true 
with  

  

!2 (" ) =

1# 1
2
$T

2" 2 + 1
24

$T
4" 4%

&'
(
)*

2

+" 2$T
2 1# 1

6
$T

2" 2%
&'

(
)*

2+

,
-
-

.

/
0
0 C
sup k3sk3s( )

12 min 1# 1
2
$T

2 +
amax$ q

12 min

%

&
'

(

)
* " 2 + 1

24
$T

4 +
amax$ q

3

612 min

%

&
'

(

)
* " 4

+

,
-
-

.

/
0
0

 (86) 



8    Journal of Advanced Thermal Science Research, 2019, Vol. 6 Stan et al. 

and the critical frequency is estimated as  

  

! c2 = min 6
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where  !
~

2  is the smallest positive root of the algebraic 
equation  
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Remark 3 It has to be outlined that the classical 
Fourier law of heat conduction (that is the case 

(0,0)=),( mn ) imposes no critical limit upon the 
frequency of vibration in concern. Instead, when the 
genuine lagging behavior is considered, as it can be 
seen from the above examples, a critical frequency 
there seems to be imposed in order to establish the 
exponential decay estimates.  

CONCLUDING DISCUSSIONS 

Theorem 1 (by the estimates (44) and (47)) and 
Remark 2 (by the estimate (54)) describe some Saint 
Venant effects for the steady state solution (6) of the 
general thermal lagging model based on the 
fundamental equations (1) and (2), provided the 
frequency is lower than a prescribed critical value as 
given, correspondingly, by the relations (45), (48) and 
(55) and under the only assumption that   b0 > 0 . At first 
glance we can observe the existence of a critical 
frequency limiting the class of the steady state 
vibrations endeavoured with the Saint Venant effects, 
in contrast with the classical Fourier model of heat 
conduction where such limiting frequency is absent 
(see the item (I) of the above section). 

On the other side the spatial behavior of the 
transient solutions, for the model in concern, was 
established by Chiriţă [5]. It was shown there that (a) 
for   n = m +1  there was established an influence 
domain result (the corresponding constitutive equation 
describes the wave behavior), while (b) for   n = m  there 
was established some exponential decay estimates of 
the Saint-Venant type (the corresponding constitutive 
equation describes the diffusive behavior), without any 
restriction on the coefficients of the constitutive 
equation (2) other than   anbm > 0 . Instead for the steady 
state solutions the spatial behavior is established in the 
present paper under the only hypothesis that   b0  is 
positive. 

Going further to the examples presented in the 
above section, we have to outline that our analysis 

points out the following aspects:  

(i) the spatial behavior of the steady state solutions 
within the Fourier model is established without any 
restriction upon the sign of the coefficient  a  and 
without any critical frequency; 

(ii) for the Maxwell-Cattaneo model (characterized 
by the delay time 

 
! q ), the study of the spatial behavior 

of the steady state solutions introduces a critical 
frequency depending on the time delay when   a > 0 , 
while when   a ! 0  the existence of the critical frequency 
is superfluous; 

(iii) by increasing the orders of the delay time  !T  
into the constitutive equation (4) results in a decreasing 
in the spatial decaying rate; 

(iv) by increasing the orders of the two delay times 

 !T  and 
 
! q  into the constitutive equation (4) results in 

diminishing the values of the critical frequency for 
which the corresponding spatial decay is established.  
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