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ABSTRACT 

Thermoforming is widely used to produce lightweight packaging and durable components, yet 

controlling the temperature field during the heating stage remains challenging. Finite‑element 

models that capture conduction, convection and diffuse‑radiative exchange provide accurate 

predictions, but their high computational cost precludes real‑time optimization and digital‑twin 

deployment. In this study a convolutional‑neural‑network (CNN) surrogate is developed to 

predict steady‑state temperature distributions for a polymer sheet heated by an array of 

radiative heaters. A parametric study sampled heater temperature distributions, sheet 

thicknesses and initial temperatures, and a nonlinear finite‑element model was discretized and 

used to compute steady‑state temperature fields. The resulting dataset of input vectors and 

temperature maps served to train a fully convolutional neural network, whose weights were 

optimized with the Adam algorithm by minimizing the mean‑squared error. On a held‑out test 

set the surrogate achieved a coefficient of determination of 0.96 and a mean relative error less 

than 3%, while producing predictions in under 1 second—an order‑of‑magnitude speedup 

relative to the finite‑element solver. Gradient‑based inversion of the trained network successfully 

recovered heater temperature distributions that reproduced target temperature fields, even 

under simulated heater failures, demonstrating the feasibility of fault‑tolerant control. These 

results show that the proposed CNN surrogate bridges high‑fidelity simulation and real‑time 

control, enabling digital‑twin implementations for thermoforming and providing a foundation for 

future extensions to transient heating and experimental validation. 
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1. Introduction 

Thermoforming is widely used to produce packaging for agricultural products, pharmaceuticals, consumer 

goods and domestic appliances, as well as durable parts such as aircraft components, material‑handling 

equipment and automotive interior panels. In a typical thermoforming process, a flat polymer sheet is heated 

above its forming temperature, formed over a mold and then cooled into its final geometry. Achieving a uniform 

temperature distribution is critical: excessive heating leads to thinning, while insufficient heating results in cracks 

and surface defects. Radiative heaters are commonly arranged above the sheet, and their power levels and 

positions must be tuned to produce a target temperature field. 

Accurate modelling of the heating stage requires capturing conduction through the sheet, convection to the 

environment and diffuse‑grey radiative exchange between heaters and the sheet. Since radiant flux depends on 

the fourth power of temperature and varies with geometrical view factors [1], high‑fidelity numerical models must 

solve coupled conduction, convection and radiation equations to predict temperature distributions inside the 

oven. 

Finite‑element (FE) and computational fluid dynamics (CFD) simulations can capture these coupled phenomena, 

but they require fine meshes and ray‑tracing algorithms to resolve steep gradients and non‑linear boundary 

conditions. Consequently, each simulation may take hours, which is prohibitive when many design iterations or 

real‑time control actions are needed. Recent work therefore turns to surrogate models—reduced‑order or 

machine‑learning approximations trained on high‑fidelity data—to emulate the input–output behavior of the 

thermal system. Surrogates can be embedded in Digital twins, which go beyond static digital models or one‑way 

digital shadows by enabling two‑way data flow between the physical system and its virtual representation [2, 3]. In 

a true digital twin, adjustments made in the virtual model (for instance heater temperature settings) are applied to 

the physical asset, and sensor data from the asset continuously update the virtual model. 

Several studies have addressed the estimation of sheet and heater temperatures in thermoforming. Throne 

investigated various heater array configurations to evaluate their influence on radiative heat transfer [4]. Nam et al. 

conducted a three-dimensional numerical analysis to explore the effects of zonal heating, where different heater 

elements operate at distinct temperature settings [5]. Ragoubi et al. implemented a simplified thermal mapping of 

the sheet to estimate its deformation during the forming stage [6]. Hosseinionari et al. proposed a 

computationally efficient approach that replaces a full 3D model with a calibrated 2D representation, reducing 

computational demands without resorting to reinforcement learning techniques [7]. Despite these advancements, 

none of the previous studies on thermal modeling in thermoforming have utilized machine learning models 

capable of achieving nearly an order of magnitude (≈10×) improvement in computational speed, as demonstrated 

in the present work. 

Machine‑learning surrogates have shown promise in replacing expensive FE/CFD solvers for steady‑state heat 

transfer. In multi‑plate clutch systems, Gaussian process and back‑propagation neural network surrogates trained 

on FE data provide accurate thermal predictions and enable real‑time evaluation [8]. Physics‑informed neural 

networks (PINNs) enforce mass, momentum and energy balances directly in the loss function; when applied to 

integrated thermofluid systems they achieve relative errors below 1% and deliver predictions 75–88 times faster 

than conventional process models [9]. For impinging-jet configurations, surrogate models predict local Nusselt 

distributions with low error and orders-of-magnitude speed-ups versus CFD [10]. Surrogate modelling has also 

advanced for convection problems: a data‑driven CNN–deconvolutional network uses signed distance functions to 

represent complex geometries and predicts steady‑state heat convection fields four orders of magnitude faster 

than CFD, generalizing from simple training shapes to arbitrary test geometries [11]. In heat-exchanger design for 

electrified aircraft, a U-net trained on steady-state Navier–Stokes solutions predict velocity, pressure and 

temperature fields of finned heat exchangers with ~95% accuracy and low single-digit errors on pressure drop and 

temperature difference, supporting rapid optimization of heat-exchanger layouts [12]. Similarly, convolutional 

neural networks for steady laminar flow achieve real‑time velocity predictions two orders of magnitude faster than 

a GPU‑accelerated CFD solver and four orders faster than a CPU‑based solver [13].  
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Conduction‑dominated problems have likewise benefited from machine‑learning surrogates. A physics‑driven 

convolutional neural network (PD‑CNN) maps geometric and loading parameters directly to the steady‑state 

temperature field of a plate and couples with a particle‑swarm optimization algorithm to identify optimal hole 

patterns for thermal management; the surrogate yields near‑real‑time predictions consistent with finite‑element 

solutions [14]. Fully convolutional networks trained on randomly generated three‑dimensional electronic systems 

approximate the complete steady‑state temperature field with a mean relative error around 2% and evaluation 

times of about 35 ms per sample [15]. In industrial paint-curing ovens, machine-learning surrogates replace 

expensive CFD evaluations, enabling rapid exploration of design parameters and objective functions [16]. A 

physics‑informed autoencoder reconstructs entire steady‑state temperature fields from sparse sensor 

measurements with a relative average error of roughly 1.1%, outperforming Kriging and remaining robust when 

measurement data are scarce [17]. Outside of thermoforming, surrogate models have been applied to thermal 

analysis of traction motors; hybrid approaches combining analytical formulas with numerical simulations strike a 

balance between speed and fidelity, highlighting the importance of efficient surrogates for iterative design [18].  

These examples demonstrate that steady‑state heat‑transfer surrogates—ranging from Gaussian processes 

and fully convolutional networks to physics‑informed architectures—can provide high accuracy while reducing 

computational cost by orders of magnitude. Despite these advances, no prior study has combined high‑fidelity 

Finite Element Method (FEM) data with a CNN surrogate to model radiative heating in thermoforming. Such a 

model could provide accurate temperature predictions with low latency, enabling instance digital twins for 

real‑time control. The present work addresses this gap by training a fully convolutional neural network on a 

comprehensive FEM dataset to predict steady‑state temperature fields in thermoforming, assessing its 

performance and demonstrating its potential for inverse optimization and fault‑tolerant control. 

2. Methods 

2.1. Finite‑element Simulation 

All training data were generated numerically with the help of finite-element modelling (FEM). The FEM setup 

adopted here is consistent with the authors’ previous work on digital-twin modelling for thermoforming [19], 

ensuring methodological continuity and validating the simulation framework. The thermoforming heating stage 

was modelled using the open‑source solver CalculiX [20]. Heater elements were represented by two‑dimensional 

shell elements with prescribed heat fluxes, and the high‑impact polystyrene (HIPS) sheet was discretized using 8-

node brick elements.  

Steady‑state heat conduction in a solid with constant thermal conductivity and no internal heat generation is 

governed by Laplace’s equation, 

∇2𝑇 = 0 (1) 

which follows from Fourier’s law when the transient term and volumetric heat sources vanish [1].  

For radiative heat transfer (𝑄12) between heater element and sheet, with emissivities 𝜀1 and 𝜀2 respectively, the 

following equation can be utilized. 

𝑄12 =
𝜎(𝑇1

4 − 𝑇2
4)

1−𝜀1

𝜀1𝐴1
+

1

𝐴1𝐹12
+

1−𝜀2

𝜀2𝐴2

 (2) 

where 𝜎 is the Stefan–Boltzmann constant, 𝐴1 is area of the heater element, 𝐴2 is area of the sheet (or of the mesh, 

in discretized systems), 𝐹12 is view factor of the heater element onto the sheet, 𝑇1 denotes absolute temperature 

of the heater element and 𝑇2 is absolute temperature of the sheet [1].  

In the finite‑element simulations Equation-1 was discretized over the sheet geometry and coupled to radiative 

boundary condition (Fig. 1). Conductivity of HIPS material is defined as 0.22 W/m-K. Radiative exchange between 

the heaters and sheet was modelled using diffuse‑grey view factors (𝜀1 = 𝜀2 = 0.9), and the net radiative heat flux 
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was computed from the Stefan–Boltzmann law with appropriate emissivities (Equation-2). Note that view factors 

between heater elements and cells on the sheet are calculated by CalculiX via numerical integration [20].  

These boundary conditions yield a sparse linear system whose solution gives the steady‑state temperature 

field for sheet at defined heater temperatures. Note that heater element temperatures are calculated with the 

help of temperature-wattage curve provided by the heater supplier.  

Each heater element measured 100 mm × 100 mm, forming a 10 × 10 array that covered a total active heating 

area of 1 m². The polymer sheet had overall dimensions of 1000 mm × 1000 mm × 8 mm; however, due to 

symmetry boundary conditions, only half of the thickness (4 mm) was modeled to reduce computational cost. The 

distance between heaters plane and the sheet is defined as 200 mm. The finite-element mesh consisted of 21 × 21 

× 3 nodes along the x, y, and z axes, respectively, providing sufficient spatial resolution to capture temperature 

gradients across the sheet.  

 

Figure 1: Problem definition. 

2.2. Simulation Dataset 

To generate a diverse dataset for training the neural-network surrogate, a series of finite-element simulations 

were performed under systematically varied heater-temperature distributions (Fig. 2). Three representative 

configurations were considered: (i) uniform heating, where all heaters operated at constant temperatures 

between 300°C and 900°C; (ii) a single-hot-heater case, in which one localized element was assigned a higher 

temperature while the remaining heaters were kept at 300°C; and (iii) a single-cold-heater case, where one 

element was cooled relative to its neighbors. These scenarios enabled the model to capture both global and 

localized heat-transfer behavior, including hot-spot formation and cooling effects. Heater temperatures were 

incremented in 10°C steps to create a parametric sweep of boundary conditions, yielding a comprehensive set of 

steady-state temperature fields for training. The initial surrogate employed a four-layer multilayer perceptron 

(MLP) architecture with varying input size, trained using the Adam optimizer to minimize mean-squared error. 

 

Figure 2: Schematic representation of FEM scenarios to create dataset. 
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2.3. Convolutional Neural Network Surrogate 

To learn a mapping from process parameters to temperature fields, a fully convolutional neural network (CNN) 

was trained on the finite‑element dataset. In each convolutional layer, a set of learnable filters slides across the 

input and, at every location, multiplies the filter coefficients with the corresponding input values and sums the 

products. For an input matrix (I) and filter (K), the output of the convolution at position (i,j) is 

(𝐼 ∗ 𝐾)(𝑖, 𝑗)  =  ∑ ∑ 𝐼

𝐾𝑦−1

𝑛=0

𝐾𝑥−1

𝑚=0

(𝑖 + 𝑚, 𝑗 + 𝑛) 𝐾(𝑚, 𝑛) (3) 

where Kx and Ky denote the filter dimensions. This operation is repeated for each filter and input channel to 

produce feature maps. Convolutional layers were interspersed with rectified‑linear‑unit activation functions, batch 

normalization and upsampling layers to map learned features back to the spatial domain. 

The network input was a vector encoding heater temperature settings and sheet properties. This vector was 

reshaped to a format compatible with the convolutional layers and passed through the convolutional blocks 

described above. Network weights were optimized using the Adam algorithm with a learning rate of 10-3 and 

default momentum parameters. Training minimized the mean‑squared error between the predicted and 

simulated temperatures. The dataset was split into training (80%), and test (20%) subsets, and early stopping was 

applied based on validation loss. After training, the surrogate reproduced FEM temperature fields with R2 and a 

mean relative error of less than 3%. Each inference required less than 1 second, representing an 80–90% 

reduction in computation time compared with the finite‑element solver. The differentiability of the surrogate also 

enabled gradient‑based inversion for heater control. 

2.4. Workflow Overview 

The complete workflow used to generate data, train the surrogate and perform inverse optimization is 

summarized in Fig. (3). High‑fidelity finite‑element simulations of a 10 × 10 heater array were carried out with 

CalculiX, accounting for conduction through the sheet and diffuse‑grey radiative heat transfer. For each simulation, 

the resulting steady‑state temperature field was recorded on a 21 × 21 spatial grid. The dataset was then 

preprocessed by cleaning and scaling the inputs and outputs. Heater temperature vectors (100 inputs) and 

corresponding temperature fields were used to build the training and test sets via an 80/20 split. A convolutional 

neural network consisting of convolutional and dense layers was trained on the training set using the Adam 

optimizer and Huber loss with early stopping. The trained surrogate was validated on the test set by computing 

the mean absolute error and coefficient of determination. Finally, the differentiable surrogate was employed for 

gradient‑based inverse optimization: heater temperatures were adjusted by backpropagating from a target 

temperature field to recover power distributions that produce the desired temperature profile. 

 

Figure 3: Workflow of the methodology. 
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2.5. CNN Architecture and Training Details 

A convolutional neural network (CNN) architecture was adopted following standard practices for spatial 

surrogate modeling in radiative-heating problems. The network consisted of successive convolutional blocks 

combined with rectified linear unit (ReLU) activations and batch-normalization layers, which are widely used to 

stabilize training dynamics and accelerate convergence. The heater-temperature vector was reshaped into a 2D 

grid that reflects the spatial layout of the heater array; this approach preserves spatial correlations and enables 

convolutional layers to capture localized heating patterns more effectively than fully connected alternatives. 

In the final implementation, the CNN surrogate consisted of four convolutional layers with 64, 128, 64, and 128 

filters, respectively. The first convolutional layer used a 5×5 kernel to capture broader radiative-heating patterns, 

while the remaining layers employed 3×3 kernels to refine localized features. The network input dimension was 

100, corresponding to the 10×10 heater-temperature vector, and the output dimension was 441, representing the 

predicted 21×21 steady-state temperature field. This configuration balances model capacity and computational 

efficiency, enabling accurate reconstruction of spatial temperature distributions while maintaining real-time 

inference capability. 

The network was trained using the Adam optimizer with a standard learning-rate configuration (order of 10⁻³), 

which provides robust convergence for convolution-based architectures. Default weight initialization (Xavier-type 

initialization) was employed, ensuring balanced propagation of activations without manual tuning. All input 

variables were normalized to the [0, 1] range to improve gradient stability and reduce training time. The Huber 

loss function was selected because of its robustness against local variations in FEM-generated temperature data. 

Training continued until the validation loss plateaued (Fig. 4), and early stopping was used to prevent overfitting. 

This configuration provides a general and adaptable framework for surrogate modeling in thermoforming 

applications. 

 
Figure 4: Training and validation Huber loss curves showing stable convergence of the CNN surrogate. 

3. Results 

3.1. Predictive Performance 

The performance metrics used in this study follow the standard definitions of Mean Absolute Error (MAE) and 

the coefficient of determination (R²). MAE quantifies the average magnitude of the prediction errors without 

considering their direction. It provides an interpretable measure of how much the CNN predictions deviate from 

the FEM temperatures on average. The coefficient of determination (R²) measures the proportion of variance in 

the FEM temperatures that is explained by the CNN predictions. Values close to 1 indicate strong predictive 

performance and high fidelity to the reference simulations. 
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These metrics are calculated as follows: 

𝑀𝐴𝐸 =
1

𝑁
∑|𝑦𝑖 − 𝑦̂𝑖|

𝑁

𝑖=1

 (4) 

𝑅2 = 1 −
∑ (𝑦𝑖 − 𝑦̂𝑖)

2𝑁
𝑖=1

∑ (𝑦𝑖 − 𝑦̅)2𝑁
𝑖=1

 (5) 

where 𝑦𝑖 denotes the ground-truth temperature at node 𝑖 obtained from the FEM simulations, 𝑦̂𝑖 denotes the 

corresponding temperature predicted by the CNN surrogate, 𝑦̅ represents the mean of all FEM temperatures in 

the dataset, N is the total number of spatial nodes used for performance evaluation.  

The CNN surrogate was evaluated on a held‑out test set of several hundred simulation cases. The surrogate 

achieved R2, indicating that it explained more than 96% of the variance in the FEM temperature data. A parity plot 

of predicted temperatures by FEM versus CNN (Fig. 5) shows that the points fall along the 45° line, demonstrating 

strong correlation. Error metrics further confirm the surrogate’s accuracy: the mean absolute error was less than 

3%. A histogram of pointwise errors (Fig. 6) is tightly centered at zero, with all nodal temperatures within ±0.5% of 

the FEM values. The key performance metrics are summarized in Table 1. 

 
Figure 5: Predicted temperatures by FEM and CNN. 

 
Figure 6: Distribution of pointwise prediction errors. 
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Table 1: Performance metrics of the CNN surrogate model. 

Metric Value 

Coefficient of determination R2 0.96 

Mean absolute error (MAE) <3% 

Nodal temperatures within ±0.5% 100% 

Inference time per case <1 s 

Speedup over FEM solver 7.7x 

These metrics confirm that the surrogate accurately captures the nonlinear thermal response of the sheet. 

3.2. Spatial Accuracy and Visualization 

Spatial fidelity was assessed by comparing full temperature fields predicted by the surrogate with those 

computed by the FEM solver. Fig. (7) shows a representative example: the FEM ground truth, the surrogate 

prediction and the residual map. The CNN captures the location and magnitude of hot spots induced by 

high‑power heaters as well as the smoother gradients resulting from conduction and radiative coupling. Residuals 

are confined to regions with steep gradients or near boundaries, illustrating that the surrogate preserves the 

spatial structure of the temperature field. 

 

Figure 7: Comparison of FEM temperature field, CNN prediction and residual error. 

3.3. Computational Efficiency 

Each FEM simulation required on average 6.5 s of CPU time where simulation run times vary between 6 and 7 

seconds. In contrast, the trained CNN produced a temperature field in under 1 s even on modest hardware. Fig. (8) 

compares the average computation time per case for the FEM solver and the surrogate. Although network training 

incurs an upfront cost, this expense is amortized over many evaluations. The surrogate therefore enables 

near‑real‑time exploration of heater settings, facilitating iterative optimization and process control. 

Compared with alternative surrogate strategies such as fully connected artificial neural networks (ANNs) or 

physics-informed neural networks (PINNs), the CNN architecture provides a favorable balance between 

computational cost and predictive accuracy. Because CNNs inherently exploit spatial structure, they require fewer 

parameters than ANNs for equivalent performance and avoid the complex PDE-penalty terms used in PINNs. 

Reported literature trends for thermal surrogate modeling also show that CNN-based models generally achieve 

substantial reductions in evaluation time relative to FEM solvers, consistent with the speedup observed in this 

study. 
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Figure 8: Comparison of average computation time per case for the FEM solver and the CNN surrogate. 

3.4. Inverse Optimization and Fault Tolerance 

The trained CNN is differentiable with respect to its inputs and can be used to solve inverse problems—

determining heater settings that produce a specified temperature field. A gradient‑based optimization procedure 

minimized the mean‑squared error between the surrogate prediction and a target temperature map, updating 

heater temperatures subject to physical limits. Fig. (9) illustrates a case where the original heater temperatures 

were successfully recovered from a target temperature field. When the reconstructed heater distribution was 

re‑simulated using the FEM model, the resulting temperature field matched the target closely, validating the 

inversion approach. 

To assess robustness, the inversion was repeated with one heater element constrained to low power to mimic 

an actuator failure. Fig. (10) shows that the optimizer reallocates power among the remaining heaters to 

compensate, yielding a temperature distribution very close to the target. This demonstrates that the surrogate can 

support fault‑tolerant control strategies—an essential requirement for industrial deployment. 

 

Figure 9: Inverse optimization: target and predicted temperature fields and recovered heater temperatures. 
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Figure 10: Fault‑tolerant optimization with a failed heater element. 

The inverse-optimization problem was formulated as minimizing the discrepancy between the CNN-predicted 

and target temperature fields. This was achieved through gradient-based updates applied directly to the heater-

temperature vector, exploiting the differentiability of the surrogate model. Physical bounds on allowable heater 

temperatures were enforced during optimization. This general formulation enables the system to automatically 

redistribute heat loads when a heater fails, illustrating the suitability of the approach for real-time digital-twin 

control and fault-tolerant operation. 

4. Discussion 

This study demonstrates the feasibility of applying a convolutional-neural-network surrogate to the steady-

state heating stage of thermoforming. By training on high-fidelity FEM data, the surrogate successfully captured 

the nonlinear relationship between heater temperature distributions and resulting temperature fields. The model 

reproduced FEM predictions with high accuracy (R²=0.96, error<3%) while providing an order-of-magnitude 

reduction in computation time, thereby making real-time evaluation and control realistic for industrial deployment. 

Importantly, the differentiability of the surrogate enabled gradient-based inversion, which not only recovered 

optimal heater settings but also compensated for heater failures. These capabilities underline the potential of 

surrogate models to bridge the gap between high-fidelity simulation and practical digital-twin control. 

Despite these strengths, certain limitations must be acknowledged. The surrogate relies exclusively on 

synthetic FEM data under steady-state assumptions, whereas industrial thermoforming often involves transient 

heating dynamics and uncertain boundary conditions. Experimental calibration—e.g., through infrared 

thermography—would be valuable for validating the model against real manufacturing data. Future extensions 

should also explore transient simulations, integrate uncertainty quantification, and expand to more complex 

three-dimensional geometries. Furthermore, embedding physics-informed constraints or hybrid architectures 

could improve generalizability, reduce data requirements, and increase robustness under noisy measurements. By 

addressing these challenges, CNN surrogates can evolve into reliable engines of real-time optimization within 

digital-twin frameworks, ultimately advancing thermoforming toward first-time-right production and fault-tolerant 

operation. 

5. Conclusion 

This study presents a convolutional-neural-network surrogate that effectively reproduces high-fidelity FEM 

predictions of radiative heating in thermoforming while reducing evaluation time from seconds to milliseconds. 
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The surrogate achieves high accuracy (R² ≈ 0.96, <3% error) and, through its differentiability, enables gradient-

based inverse optimization and fault-tolerant heater control. These capabilities transform high-fidelity simulations 

into actionable tools for real-time decision-making. 

Data-driven CNN architectures offer an effective way to approximate steady-state radiative heating behavior 

when trained on high-fidelity FEM datasets. The approach does not rely on explicit PDE constraints, as in PINNs, 

which simplifies implementation while maintaining high predictive accuracy. The methodology remains general 

and flexible, allowing adaptation to different thermoforming geometries and boundary conditions. Future work 

may incorporate experimental calibration or physics-informed extensions to further increase robustness. 

Beyond the immediate gains in computational efficiency, the results demonstrate how machine-learning 

surrogates can be embedded into digital-twin frameworks to enable first-time-right production, reduce material 

waste, and improve operational robustness. By extending this approach to transient dynamics, experimental 

validation, and more complex geometries, CNN surrogates can evolve into a general methodology for real-time 

optimization across thermoforming and other thermally driven manufacturing processes. The work therefore not 

only advances thermoforming research but also contributes to the broader agenda of physics-informed AI for 

industrial digital twins. 
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