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Abstract: In this study energy dissipation coefficient and entropy generation process in characteristic wall shear flows 
have been investigated. Effect of pressure gradients on energy dissipation coefficient for flows undergoing “bypass” 

transition from laminar to turbulent state has been studied. Reynolds-Averaged Navier-Stokes (RANS) models and 
Direct Numerical Simulations (DNS) are implemented to study the energy dissipation coefficient and local entropy 
generation in pre-transitional and transitional regions. Three of these RANS models are transitional models such as, 

traditional SST 
 
k (2eq), SST 

 
k (4eq) and 

 
k kl and the results are compared with DNS. Four simulations 

have been performed for (1) zero, (2) favorable, (3) adverse and (4) strong-adverse pressure gradient cases. The 
numerical results show that the pressure gradient has a significant effect on energy dissipation coefficient and entropy 
generation.  
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1. INTRODUCTION 

Fundamental understanding of local (pointwise) 

distributions of entropy generation rates and energy 

dissipation coefficient in characteristic wall shear flows 

are significant to potentially increasing energy 

efficiency and sustainability and thereby reducing fuel 

consumption [1]. For entropy generated by fluid friction, 

the rates are predictable for developed turbulent flows 

and pure laminar flows as reported by McEligot et al. 

[2-4]. The main difficulty lies in prediction of flows 

undergoing a so-called “bypass” transition [5-7] from a 

laminar to a turbulent state induced by strong 

freestream turbulence and streamwise pressure 

gradients. Most of the work to date have been on 

investigating the flow field using direct numerical 

simulation and very few studied have been done on 

investigating the entropy generation and energy 

dissipation coefficient in such flow fields; fewer studies 

considered turbulence models like RANS [5-7] to 

examine the capability and versatility of such industrial 

turbulence models since the applications of DNS are 

confined to the flow field with low Reynolds number. 

Almost all of these works have not considered the 

effect of pressure gradients which have an important 

influence on such type of flows. Thus a study on 

entropy generation and energy dissipation coefficient 

employing different turbulence models were deemed of 

interest. E. Ghasemi et al. [5] studied the entropy 
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generation in a transitional boundary layer region under 

the influence of freestream turbulence numerically for 

zero pressure gradient case. As their results [5] show, 

all the RANS models which they studied predicted 

transition onset prematurely and, consequently, over 

predict the integral entropy generation rate and the skin 

friction coefficient in the transition region; and also their 

results show that among the RANS models, SST k
 

(4eq) model and k kl provide the better results 

and SST  k  
(4eq) model predicts the transition 

onset closer to DNS. E. Ghasemi et al. [5] results 

clearly show that how entropy generation evolves in the 

transition from laminar to turbulent and the rate of 

entropy generation in transition region is much greater 

than that value in the other regions (laminar and 

turbulent). E. Ghasemi et al. [5] investigated an 

approximate equation for pointwise entropy generation 

and energy dissipation coefficient; their results provide 

a very good estimate of evaluating the rate of entropy 

and energy dissipation coefficient which significantly 

reduces the computational cost for numerical methods 

to calculate the fluctuation velocities in the region very 

close to wall. In continuation of their work E. Ghasemi 

et al. [6,7] studied the effects of adverse and favorable 

pressure gradients on entropy generation. Their results 

show that transition is early and abrupt for the strong 

adverse pressure gradient but occurs further 

downstream and is longer with the increasingly 

favorable flows, and that entropy generation rate at the 

wall increases as pressure gradient grows.  

The objectives of the present research is to perform 

a study on effects of pressure gradients on energy 

dissipation coefficient and entropy generation in a 
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transitional boundary layer region over a flat plate 

under the influence of free stream turbulence.. Study of 

pressure gradient effects on entropy generation and 

energy dissipation coefficient have been performed for 

different cases of favorable, zero, adverse and strong-

adverse pressure gradients. Numerical results of the 

turbulence RANS models have been compared to the 

DNS data to examine the accuracy of these models in 

modeling such flow fields which have a variety of 

industrial and engineering applications.  

2. ENERGY DISSIPATION COEFFICIENT ( C
d
)
 

The entropy generation rate per unit area  S is a 

key quantity for minimizing thermodynamic losses for 

overall design. In wall coordinates, it can be written as 

[5-7],  
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If the pointwise mean turbulence kinetic energy 

equation is integrated from the wall to the free stream - 

subject to the presence of free stream turbulence at the 

edge of the boundary layer – and the direct dissipation 

is added, the following can be derived as [8,9], 
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In terms of freestream velocity,
 
U , the entropy 

generation rate per unit area 
 

S( )
+

may be written as an 

energy dissipation coefficient [8,9] 
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3. NUMERICAL SIMULATIONS AND BOUNDARY 
CONDITIONS 

The results of direct numerical simulation by Nolan 

and Zaki [10] are employed as benchmarks to assess 

the possible use of popular turbulence and transition 

models to predict entropy generation in bypass 

transition. The flow domain and boundary conditions 

are the same as those in E. Ghasemi et al. [5-7]. The 

grid spacing is uniform in the streamwise and clustered 

inside the boundary layer in the wall-normal direction. 

ASYSY-FLUENT is used for applying RANS and 

transitional models. The Finite-Volume (FV) approach 

using the SIMPLE algorithm is used with second-order 

upwind differencing for the convective terms and the 

central differencing for diffusion terms.  

4. RESULTS AND DISCUSSIONS 

4.1. Zero Pressure Gradient  

Figure 1 demonstrates the DNS prediction of the 
different terms contributing to the energy dissipation 
rate in Eq. (2). At the beginning of the computational 

domain, at 
  
Re

0
=  800 where the velocity profile is 

laminar with very small fluctuations, the Blasius and 
DNS solutions nearly agree since the turbulent portion 
is still essentially zero. 
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Figure 1: DNS results for dissipation coefficient C
d

 and 

related contributions. 

As the flow develops the mean velocity profile 
deviates from the Blasius solution due to variation of 
the viscous term contribution. The quasi-turbulent 

contribution to 
 
C

d
 is enhanced in the pre-transitional 

region as the freestream turbulence initiates streaks 
growing inside the boundary layer. As seen from the 
Figure the contribution of the turbulent fluctuation is 
slightly greater than the viscous one in part of the 
transition region. There is a difference between 
‘approx-total DNS’ and the exact DNS within the 
transition region that shows the contribution of the 
energy flux term in the energy dissipation equation. 
This energy flux term is first noticeable in the pre-
transitional laminar boundary layer. It then grows to 

about ten per cent of 
 
C

d
. As the developed turbulent 

boundary layer is approached it decreases and 
becomes negligible. This behavior is consistent with 
the observations of Walsh et al. [11]; their higher 
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freestream turbulence (
 
Tu

in
 = 4.7 %) apparently led to 

a somewhat larger contribution from this energy flux 

term. The present RANS predictions of 
 
C

d
 are 

compared to the DNS results and Blasius predictions in 
Figure 2 in two formats for the reader’s convenience. 

As with C
f

, predictions for the two turbulence 

models diverged from the pure laminar case almost 
immediately. The two transition models diverged more 
gradually, consistent with their later apparent transition 
onset, but still much sooner than the DNS. 
Consequently, all these RANS models overpredict the 
entropy generation rate in the transition region. For 

 
Re greater than about 700, all except the RSM agree 

with the DNS results for the developed turbulent 
boundary layer [5-7, 12]. 
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Figure 3: DNS results for dissipation coefficient C
d

 and 

related contributions. 

The results of the present study can be extended by 

using LES modeling of turbulence flow [13-15], 

analytical modeling of boundary layer flow [16-23] or 

free convection heat transfer [24-29] using various 

numerical methods [30-33]. 

5. RESULTS FOR THE EFFECTS OF PRESSURE 
GRADIENTS 

5.1. Favorable Pressure Gradient  

Figure 3 demonstrates the DNS prediction of the 

different terms contributing to the energy dissipation 

rate in Eq. (2) for the FPG case. At the beginning of the 

computational domain, at 
 
Re

0

=  800 where the 

velocity profile is laminar with very small fluctuations, 

the Blasius and DNS solutions nearly agree since the 

turbulent portion is still essentially zero. As the flow 

develops the mean velocity profile deviates from the 

Blasius solution due to variation of the viscous term 

contribution. The quasi-turbulent contribution to  
C

d  is 

enhanced in the pre-transitional region as the 

freestream turbulence initiates streaks growing inside 

the boundary layer. As seen from the Figure the 

contribution of the turbulent fluctuation is slightly 

greater than the viscous one in part of the transition 

region. As can be seen from the Figure, the values of 

different terms are slightly greater that those values for 

the ZPG case which is due to the effects of favorable 

pressure gradient or decreasing the pressure gradient 

effects. There is a difference between ‘approx-total 

DNS’ and the exact DNS within the transition region 

that shows the contribution of the energy flux term in 

the energy dissipation equation. This energy flux term 

     

    a        b 

Figure 2: Comparison of dissipation coefficients C
d

calculated by RANS models with total C
d

 by DNS. 
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is first noticeable in the pre-transitional laminar 

boundary layer. It then grows to about 10% of C
d
. As 

the developed turbulent boundary layer is approached 

it decreases and becomes negligible. The present 

RANS predictions of C
d
 are compared to the DNS 

results and Blasius predictions in Figure 4 for the FPG 

case. As with
 
C

f , predictions for the two turbulence 

models diverged from the pure laminar case almost 

immediately. The two transition models diverged more 

gradually, consistent with their delayed transition onset, 

but still much earlier than the DNS. Again compared to 

the ZPG case the DNS values of the FPG case are 

higher than the values for the ZPG case. 

Consequently, all these RANS models overpredict the 

entropy generation rate in the transition region. For 

Re greater than about 800, none of them except the 

RSM agree with the DNS results for the developed 

turbulent boundary layer. 

5.2. Adverse Pressure Gradient and Strong 
Adverse Pressure Gradient  

Figure 5 demonstrates the DNS prediction of the 
different terms contributing to the energy dissipation 
rate for the APG cases. At the beginning of the 

computational domain, at 
 
Re

0

=  800 where the 

velocity profile is laminar from a ZPG (Blasius) with 
very small fluctuations, the Blasius and DNS solutions 
nearly agree since the turbulent portion is still 
essentially zero. As the flow develops the mean 
velocity profile deviates from the Blasius solution due to 
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Figure 4: Comparison of dissipation coefficients 
 
C

d
calculated by RANS models with total 

 
C

d
 by DNS. 
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Figure 5: DNS results for dissipation coefficient C
d

 and related contributions, Top: APG , Bottom: APG
strong

. 
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variation of the viscous term contribution and pressure 

gradient. The quasi-turbulent contribution to 
 
C

d
 is 

enhanced in the pre-transitional region as the 
freestream turbulence initiates streaks growing inside 
the boundary layer. As can be seen from the Figure, 
the values of different terms are slightly lower than 
those values for the other cases which are due to the 
effects of adverse pressure gradients or increasing the 
pressure gradient effects. The present RANS 

predictions of 
 
C

d
 are compared to the DNS results and 

Blasius predictions in Figure 6 for the APG cases. As 

with C
f
, predictions for the two turbulence models 

diverged from the Blasius case almost immediately. 
The two transition models diverged more gradually, 

consistent with their delayed transition onset, but still 
much sooner than the DNS. Compared to the ZPG and 
FPG cases, the DNS values of the APG case is smaller 

than that value for the ZPG case, but for 
 
APG

strong
it is 

almost the same as ZPG case. 

6. CONCLUSIONS  

 Here, five RANS models ( k  enhanced wall, 

SST k
 

(2eq), SST k
 

(4eq), k kl  and 

RSM) have been implemented to study the energy 

dissipation coefficient and entropy generation in a 

transitional boundary layer region for flow over a flat 

plate, under the influence of free stream turbulence. 
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Figure 6: a: Comparison of dissipation coefficients C
d

calculated by RANS models with total C
d

 by DNS. Top: APG, 

Bottom:
 
APG

strong
. b: Comparison of dissipation coefficients 
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Study of pressure gradient effects on energy 

dissipation coefficient and entropy generation have 

been investigated for different cases of favorable, zero, 

adverse, and strong-adverse pressure gradients (FPG, 

ZPG, APG and strong APG). Numerical results of the 

turbulence RANS model based simulation have been 

compared to DNS data to examine the accuracy of 

these models in modeling such flow fields. All the 

RANS models over predict the energy dissipation 

coefficient and the integral entropy generation rate in 

the transition region.  
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