Eddy Dissipation Combustion Modeling of Turbulent Reacting Flow

Authors

  • Majid Almas Florida International University, Miami, FL 33199, USA

DOI:

https://doi.org/10.15377/2409-5761.2016.03.01.9

Keywords:

Gaseous combustion, eddy dissipation, specious transport, NOX production.

Abstract

 In this paper specious transport and gaseous combustion have been modeled numerically using computational fluid dynamics method. A cylindrical combustor burning methane (CH4) in air is studied using the eddy-dissipation model. Eddy dissipation combustion model has been coupled with the standard k-ɛ model to simulate this highly complex turbulent reactive fluid flow field. Effects of air and fuel velocities have been investigated on the reactant mass fractions, temperature and velocity profiles and NOX production.

Downloads

Download data is not yet available.

Author Biography

  • Majid Almas, Florida International University, Miami, FL 33199, USA
    Department of Mechanical and Materials Engineering

References

Agrawal GK and Suman Chakraborty SK. Some Heat transfer characteristics of premixed flame impinging upwards to plane surfaces inclined with the flame jet axis. Int J Heat Mass Transf 2010; 53: 1899-1907. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2009.12.068 DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2009.12.068

Ghasemi E, McEligot DM, Nolan KP, Crepeau J, Tokuhiro A and Budwig RS. Entropy generation in a transitional boundary layer region under the influence of free stream turbulence using transitional RANS models and DNS. Int Commu heat Mass transfer 2013; 41: 10-16. http://dx.doi.org/10.1016/j.icheatmasstransfer.2012.11.005 DOI: https://doi.org/10.1016/j.icheatmasstransfer.2012.11.005

Wang J, Huang Z, Miao H, Wang X and Jiang D. Characteristics of direct injection combustion fuelled by natural gas–hydrogen mixtures using a constant volume vessel. Int J Hydrogen Energy 2008; 33: 1947-1956. http://dx.doi.org/10.1016/j.ijhydene.2008.01.007 DOI: https://doi.org/10.1016/j.ijhydene.2008.01.007

Ilbas M, Crayford AP, Yilmaz I, Bowen PJ and Syred N. Laminar-burning velocities of hydrogen–air and hydrogen– methane–air mixtures: an experimental study. Int J Hydrogen Energy 2006; 31: 1768-1779. http://dx.doi.org/10.1016/j.ijhydene.2005.12.007 DOI: https://doi.org/10.1016/j.ijhydene.2005.12.007

Wierzba I and Wang Q. The flammability limits of H2–CO– CH4 mixtures in air at elevated temperatures. Int J Hydrogen Energy 2006; 31: 485-489. http://dx.doi.org/10.1016/j.ijhydene.2005.04.022 DOI: https://doi.org/10.1016/j.ijhydene.2005.04.022

do Sacramento EM, de Lima LC, Oliveira CJ and Veziroglu TN. A hydrogen energy system and prospects for reducing emissions of fossil fuels pollutants in the Ceará state-Brazil. Int J Hydrogen Energy 2008; 33: 2132-2137. http://dx.doi.org/10.1016/j.ijhydene.2008.02.018 DOI: https://doi.org/10.1016/j.ijhydene.2008.02.018

Granovskii M, Dincer I and Rosen MA. Greenhouse gas emissions reduction by use of wind and solar energies for hydrogen and electricity production: economic factors. Int J Hydrogen Energy 2007; 23: 927-931. http://dx.doi.org/10.1016/j.ijhydene.2006.09.029 DOI: https://doi.org/10.1016/j.ijhydene.2006.09.029

Van Blarigan P and Keller JO. A hydrogen fuelled internal combustion engine designed for single speed/power operation. Int J Hydrogen Energy 1998; 23: 603-609. http://dx.doi.org/10.1016/S0360-3199(97)00100-6 DOI: https://doi.org/10.1016/S0360-3199(97)00100-6

Wang J, Huang Z, Fang Y, Liu B, Zeng K, Miao H, et al. Combustion behaviors of a direct-injection engine operating on various fractions of natural gas–hydrogen blends. Int J Hydrogen Energy 2007; 32: 3555-564. http://dx.doi.org/10.1016/j.ijhydene.2007.03.011 DOI: https://doi.org/10.1016/j.ijhydene.2007.03.011

Saravanan N and Nagarajan G. An experimental investigation of hydrogen-enriched air induction in a diesel engine system. Int J Hydrogen Energy 2008; 33: 1769-1775. http://dx.doi.org/10.1016/j.ijhydene.2007.12.065 DOI: https://doi.org/10.1016/j.ijhydene.2007.12.065

Coppens FHV, De Ruyck J and Konnov AA. Effects of hydrogen enrichment on adiabatic burning velocity and NO formation in methane + air flames. Exp Thermal Fluid Sci 2007; 31: 437-444. http://dx.doi.org/10.1016/j.expthermflusci.2006.04.012 DOI: https://doi.org/10.1016/j.expthermflusci.2006.04.012

Downloads

Published

2016-07-31

Issue

Section

Articles

How to Cite

Eddy Dissipation Combustion Modeling of Turbulent Reacting Flow. (2016). Journal of Advances in Applied & Computational Mathematics, 3(1), 58-64. https://doi.org/10.15377/2409-5761.2016.03.01.9

Similar Articles

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)