Convergence of the Galerkin Method for Nonlinear Dynamics of the Continuous Structure

## Keywords

Galerkin method
nonlinear dynamics
nonlinear vibration
convergence
continuous structure.

## How to Cite

Hu Ding. (2015). Convergence of the Galerkin Method for Nonlinear Dynamics of the Continuous Structure. Journal of Advances in Applied & Computational Mathematics, 1(2), 43–53. https://doi.org/10.15377/2409-5761.2014.01.02.3

## Abstract

The Galerkin truncation method is a powerful method for nonlinear dynamics analysis, and has been widely used to discretize the spatial differential operator. Due to more and more new fields of application, the research interest on the Galerkin method is still high today. In this paper, research on the convergence of Galerkin method for nonlinear dynamics of the continuous structure is thoroughly reviewed. At the beginning, the Galerkin method is briefly introduced. Then, the paper reviews the application of the truncation method. This paper also sums up the comparative study on the Galerkin method with other methods, such as the finite difference method (FDM), the finite element method (FEM), and the multiple time scales method. In the investigations concerning the convergence of the Galerkin method, this paper summarizes recent studies on nonlinear dynamics of the axially moving systems, the continua on the nonlinear foundation, and the belt-pulley systems. Finally, the truncation terms of Galerkin method for the continuous structure's nonlinear dynamics analysis is suggested for the future research applications.

## References

Galerkin BG. On electrical circuits for the approximate solution of the Laplace equation. Vestnik Inzh 1915; 19: 897– 908 (In Russian).

Leung AYT, Mao SG. A symplectic Galerkin method for nonlinear vibration of beams and plates. J Sound Vib 1995; 183(3): 364-380. http://dx.doi.org/10.1006/jsvi.1995.0266

Vorovich II, Lebedev LP. On the Bubnov-Galerkin method in the nonlinear theory of vibrations of viscoelastic shells. J Appl Math Mech 1973; 37(6): 1060-1067. http://dx.doi.org/10.1016/0021-8928(73)90071-3

Gristchak VZ, Dmitrieva YA. Hybrid WKB–Galerkin method and its application. Technische Mechanik 1995; 15:281-294.

Goncalves PB, Del Prado ZJGN. Low-dimensional Galerkin models for nonlinear vibration and instability analysis of cylindrical shells. Nonlinear Dyn 2005; 41: 129-145. http://dx.doi.org/10.1007/s11071-005-2802-3

George R. Buchanan. Galerkin finite element derivation for vibration of a thermopiezoelectric structure. J Sound Vib 2006; 294: 362-367. http://dx.doi.org/10.1016/j.jsv.2005.10.016

Carassale L, Piccardo G. Non-linear discrete models for the stochastic analysis of cables in turbulent wind. Int J Non-Lin Mech 2010; 45: 219–231. http://dx.doi.org/10.1016/j.ijnonlinmec.2009.11.002

Frederico MA, Silva PB, Gonçalves ZJGNP. An alternative procedure for the non-linear vibration analysis of fluid-filled cylindrical shells. Nonlinear Dyn 2011; 66:303-333. http://dx.doi.org/10.1007/s11071-011-0037-z

Steindl A. Viscous damping issues in the dimension reduction of a fluid conveying tube. Proceedings of the Institution of Mechanical Engineers, Part C: J Mech Eng Sci 2011; 225: 2347-2353. http://dx.doi.org/10.1177/0954406211411253

Bhattiprolu U, Bajaj AK, Davies P. An efficient solution methodology to study the response of a beam on viscoelastic and nonlinear unilateral foundation: Static response. Int J Solids Struct 2013; 50: 2328-2339. http://dx.doi.org/10.1016/j.ijsolstr.2013.03.014

Cheung YK, Zhou D. Hydroelastic vibration of a circular container bottom plate using the Galerkin method. J Fluids Struct 2002; 16(4): 561-580. http://dx.doi.org/10.1006/jfls.2001.0430

Chen LQ, Zhang NH, Zu JW. The regular and chaotic vibrations of an axially moving viscoelastic string based on fourth order Galerkin truncation. J Sound Vib 2003; 261: 764- 773. http://dx.doi.org/10.1016/S0022-460X(02)01281-6

Xiong LY, Zhang GC, Ding H, Chen LQ. Nonlinear forced vibration of a viscoelastic buckled beam with Two-to-One internal resonance. Mathematical Problems in Engineering 2014; 906324-14.

Chen LQ, Zhang YL, Zhang GC, Ding H. Evolution of the double-jumping in pipes conveying fluid flowing at the supercritical speed. Int J Non-Lin Mech 2014; 58: 11-21. http://dx.doi.org/10.1016/j.ijnonlinmec.2013.08.012

Gorman DJ, Ding W. Accurate free vibration analysis of laminated symmetric cross-ply rectangular plates by the superposition-Galerkin method. Comp Struct 1995; 31: 129- 136. http://dx.doi.org/10.1016/0263-8223(95)00008-9

Gorman DJ, Ding W. Accurate free vibration analysis of clamped antisymmetric angle-ply laminated rectangular plates by the Superposition-Galerkin method. Comp Struct 1996; 34: 387-395. http://dx.doi.org/10.1016/0263-8223(96)00006-2

Gorman DJ, Ding W. The Superposition-Galerkin method for free vibration analysis of rectangular plates. J Sound Vib 1996; 194(2): 187-198. http://dx.doi.org/10.1006/jsvi.1996.0352

Sainsbury MG, Zhang QJ. The Galerkin element method applied to the vibration of damped sandwich beams. Computers and Structures 1999; 71: 239-256. http://dx.doi.org/10.1016/S0045-7949(98)00242-9

Zhang QJ, Sainsbury MG. The Galerkin element method applied to the vibration of rectangular damped sandwich plates. Comput Struct 2000; 74: 717-730. http://dx.doi.org/10.1016/S0045-7949(99)00068-1

Saadatpour MM, Azhari M, Bradford MA. Vibration analysis of simply supported plates of general shape with internal point and line supports using the Galerkin method. Eng Struct 2000; 22: 1180–1188. http://dx.doi.org/10.1016/S0141-0296(99)00073-5

Chen XL, Liu GR, Lim SP. An element free Galerkin method for the free vibration analysis of composite laminates of complicated shape. Comp Struct 2003; 59: 279-289. http://dx.doi.org/10.1016/S0263-8223(02)00034-X

Amabili M, Sarkar A, Paidoussis MP. Reduced-order models for nonlinear vibrations of cylindrical shells via the proper orthogonal decomposition method. J Fluids Struct 2003; 18: 227-250. http://dx.doi.org/10.1016/j.jfluidstructs.2003.06.002

Al-Qassab M, Nair S. Wavelet-Galerkin method for the free vibrations of an elastic cable carrying an attached mass. J Sound Vib 2004; 270: 191–206. http://dx.doi.org/10.1016/S0022-460X(03)00490-5

Mustapha KB, Zhong ZW. The thermo-mechanical vibration of a single-walled carbon nanotube studied using the Bubnov–Galerkin method. Physica E 2010; 43: 375–381. http://dx.doi.org/10.1016/j.physe.2010.08.012

Amabili M, Sarkar A, Paidoussis MP. Chaotic vibrations of circular cylindrical shells: Galerkin versus reduced-order models via the proper orthogonal decomposition method. J Sound Vib 2006; 290: 736-762. http://dx.doi.org/10.1016/j.jsv.2005.04.034

Chen H, Yu WB. Postbuckling and mode jumping analysis of composite laminates using an asymptotically correct, geometrically non-linear theory. Int J Non-Lin Mech 2006; 41: 1143-1160. http://dx.doi.org/10.1016/j.ijnonlinmec.2006.11.004

Cepon G, Boltezar M. Computing the dynamic response of an axially moving continuum. J Sound Vib 2007; 300: 316- 329. http://dx.doi.org/10.1016/j.jsv.2006.08.014

Noijen SPM, Mallon NJ, Fey RHB, Nijmeijer H, Zhang GQ. Periodic excitation of a buckled beam using a higher order semianalytic approach. Nonlinear Dyn 2007; 50:325-339. http://dx.doi.org/10.1007/s11071-006-9161-6

Fazzolari FA, Carrera E. Advanced variable kinematics Ritz and Galerkin formulations for accurate buckling and vibration analysis of anisotropic laminated composite plates. Comp Struct 2011; 94: 50-67. http://dx.doi.org/10.1016/j.compstruct.2011.07.018

Schwarts-Givli H, Rabinovitch O, Frostig Y. Free vibrations of delaminated unidirectional sandwich panels with a transversely flexible core—a modified Galerkin approach. J Sound Vib 2007; 301: 253-277. http://dx.doi.org/10.1016/j.jsv.2006.10.006

Koivurova H. The numerical study of the nonlinear dynamics of a light, axially moving string. J Sound Vib 2009; 320: 373– 385. http://dx.doi.org/10.1016/j.jsv.2008.07.026

Pellicano F, Catellani G, Fregolent A. Parametric instability of belts: theory and experiments, Comput Struct 2004; 82: 81– 91. http://dx.doi.org/10.1016/j.compstruc.2003.07.004

Amirani MC, Khalili SMR, Nemati N. Free vibration analysis of sandwich beam with FG core using the element free Galerkin method. Comp Struct 2009; 90: 373-379. http://dx.doi.org/10.1016/j.compstruct.2009.03.023

Liew KM, Peng LX, Kitipornchai S. Vibration analysis of corrugated Reissner–Mindlin plates using a mesh-free Galerkin method. Int J Mech Sci 2009; 51: 642–652. http://dx.doi.org/10.1016/j.ijmecsci.2009.06.005

Bahmyari E, Khedmati MR. Vibration analysis of nonhomogeneous moderately thick plates with point supports resting on Pasternak elastic foundation using element free Galerkin method. Engineering Analysis with Boundary Elements 2013; 37: 1212–1238. http://dx.doi.org/10.1016/j.enganabound.2013.05.003

Peng LX, Yan ST, Mo GK, Zhang X. Free vibration analysis of corrugated-core sandwich plates using a meshfree Galerkin method based on the first-order shear deformation theory. Int J Mech Sci 2014; 78: 8-18. http://dx.doi.org/10.1016/j.ijmecsci.2013.10.009

Xia P, Long SY, Wei KX. An analysis for the elasto-plastic problem of the moderately thick plate using the meshless local Petrov-Galerkin method. Engineering Analysis with Boundary Elements 2011; 35: 908–914. http://dx.doi.org/10.1016/j.enganabound.2011.02.006

Zhu P, Zhang LW, Liew KM. Geometrically nonlinear thermomechanical analysis of moderately thick functionally graded plates using a local Petrov-Galerkin approach. Comp Struct 2014; 107: 298-314. http://dx.doi.org/10.1016/j.compstruct.2013.08.001

Somireddy M, Rajagopal A. Meshless natural neighbor Galerkin method for the bending and vibration analysis of composite plates. Comp Struct 2014; 111: 138-146. http://dx.doi.org/10.1016/j.compstruct.2013.12.023

R Ansari, Arjangpay A. Nanoscale vibration and buckling of single-walled carbon nanotubes using the meshless local Petrov-Galerkin method, Physica E 2014. http://dx.doi.org/10.1016/j.physe.2014.06.013

Emam SA, Nayfeh AH. On the nonlinear dynamics of a buckled beam subjected to a primary-resonance excitation. Nonlinear Dyn 2004; 35: 1-17. http://dx.doi.org/10.1023/B:NODY.0000017466.71383.d5

Emam SA, Nayfeh AH. Nonlinear responses of buckled beams to subharmonic-resonance excitations. Nonlinear Dyn 2004; 35: 105-122. http://dx.doi.org/10.1023/B:NODY.0000020878.34039.d4

Wang YM. The dynamical analysis of a finite inextensible beam with an attached accelerating mass. Int J Solids Struct 1998; 35(9-10): 831-854. http://dx.doi.org/10.1016/S0020-7683(97)00083-8

Eshmatov BK, Khodjaev DA. Non-linear vibration and dynamic stability of a viscoelastic cylindrical panel with concentrated mass. Acta Mech 2007; 190: 165-183. http://dx.doi.org/10.1007/s00707-006-0418-4

Eshmatov BK. Nonlinear vibrations and dynamic stability of viscoelastic orthotropic rectangular plates. J Sound Vib 2007; 300: 709-726. http://dx.doi.org/10.1016/j.jsv.2006.08.024

Eshmatov B, Mukherjee S. Nonlinear vibrations of viscoelastic composite cylindrical panels. J Vib Acoust 2007; 129: 285-296. http://dx.doi.org/10.1115/1.2730532

Palmeri A, Adhikari S. A Galerkin-type state-space approach for transverse vibrations of slender double-beam systems with viscoelastic inner layer. J Sound Vib 2011; 330(26): 6372-6386. http://dx.doi.org/10.1016/j.jsv.2011.07.037

Sampaio1 R, Soize C. Remarks on the efficiency of POD for model reduction in non-linear dynamics of continuous elastic systems. Int J Num Methods Eng 2007; 72: 22-45. http://dx.doi.org/10.1002/nme.1991

Sofi A, Muscolino G. Dynamic analysis of suspended cables carrying moving oscillators. Int J Solids Struct 2007; 44: 6725-6743. http://dx.doi.org/10.1016/j.ijsolstr.2007.03.004

Yagci B, Filiz S, Romero LL, Ozdoganlar OB. A spectral- Tchebychev technique for solving linear and nonlinear beam equations. J Sound Vib 2009; 321: 375-404. http://dx.doi.org/10.1016/j.jsv.2008.09.040

Mochida Y, Ilanko S, Duke M, Narita Y. Free vibration analysis of doubly curved shallow shells using the Superposition-Galerkin method. J Sound Vib 2012; 331: 1413-1425. http://dx.doi.org/10.1016/j.jsv.2011.10.031

Pellicano F, Vestroni F. Nonlinear dynamics and bifurcations of an axially moving beam. J Vib Acoust 2000; 122: 21-30. http://dx.doi.org/10.1115/1.568433

Ding H, Chen LQ. Natural frequencies of nonlinear transverse vibration of axially moving beams in the supercritical regime. Advances in Vibration Engineering 2011; 10(3): 261-272.

Ding H, Chen LQ. Galerkin methods for natural frequencies of high-speed axially moving beams. J Sound Vib 2010; 329(17): 3484-3494. http://dx.doi.org/10.1016/j.jsv.2010.03.005

Zhang GC, Ding H, Chen LQ, Yang SP. Galerkin Method for Steady-State Response of Nonlinear Forced Vibration of Axially Moving Beams at Supercritical Speeds. J Sound Vib 2012; 331(7): 1612-1623. http://dx.doi.org/10.1016/j.jsv.2011.12.004

Ding H, Yan QY, Zu JW. Chaotic dynamics of an axially accelerating viscoelastic beam in the supercritical regime. Int J Bifurcation Chaos 2014; 24(5): 1450062-19. http://dx.doi.org/10.1142/S021812741450062X

Yan QY, Ding H, Chen LQ. Periodic responses and chaos behaviors of an axially accelerating viscoelastic Timoshenko beam. Nonlinear Dyn 2014; 78(2): 1577-1591 http://dx.doi.org/10.1007/s11071-014-1535-6

Ding H, Chen LQ, Yang SP. Convergence of Galerkin truncation for dynamic response of finite beams on nonlinear foundations under a moving load. J Sound Vib 2012; 331(10): 2426–2442. http://dx.doi.org/10.1016/j.jsv.2011.12.036

Yang Y, Ding H, Chen LQ. Dynamic response to a moving load of a Timoshenko beam resting on a nonlinear viscoelastic foundation. Acta Mech Sin 2013; 29(5): 718-727. http://dx.doi.org/10.1007/s10409-013-0069-3

Ding H, Yang Y, Chen LQ, Yang SP. Vibration of vehiclepavement coupled system based on a Timoshenko beam on a nonlinear foundation. J Sound Vib 2014; 333(24): 6623- 6636. http://dx.doi.org/10.1016/j.jsv.2014.07.016

Ding H, Zu JW. Effect of One-way Clutch on the Nonlinear Vibration of Belt-drive Systems with a Continuous Belt model. J Sound Vib 2013; 332(24): 6472-6487. http://dx.doi.org/10.1016/j.jsv.2013.07.009

Ding H, Li DP. Static and Dynamic Behaviors of Belt-Drive Dynamic Systems with a One-Way Clutch. Nonlinear Dyn 2014; 78(2): 1553-1575. http://dx.doi.org/10.1007/s11071-014-1534-7