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Generalized Path Optimization Problem for a Weighted Digraph 

over an Additively Idempotent Semiring 

Junsheng Duan* and Dichen Hu 

School of Sciences, Shanghai Institute of Technology, Shanghai, China 

Abstract: In this paper, a generalized path optimization problem for a weighted digraph (i.e., directed graph) over an 

additively idempotent semiring was considered. First, the conditions for power convergence of a matrix over an 

additively idempotent semiring were investigated. Then we proved that the path optimization problem is associated 

with powers of the adjacency matrix of the weighted digraph. The classical matrix power method for the shortest path 

problem on the min-plus algebra was generalized to the generalized path optimization problem. The proposed 

generalized path optimization model encompasses different path optimization problems, including the longest path 

problem, the shortest path problem, the maximum reliability path problem, and the maximum capacity path problem. 

Finally, for the four special cases, we illustrate the pictorial representations of the graphs with example data and the 

proposed method. 
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1. INTRODUCTION 

Fuzzy matrices [1] are that with entries within the 

real interval [0, 1]. Theories of fuzzy sets and matrices 

have been applied to many fields such as pattern 

recognition and diagnosis [2], cluster analysis [3], 

neural networks [4], decision making [5], optimization 

[6], control [7], etc. Fan [1] gave a systemic 

investigation for the fuzzy matrix theory. Convergence, 

indices, and periods of power sequence of fuzzy 

matrices under the operations max and min were 

considered in [1,8-13]. In [8], the convergence of 

powers of a fuzzy matrix was proposed. In [9], the fuzzy 

matrix theory was used to investigate the fuzzy 

bidirectional associative memories, and in [12], an 

upper bound of indices of fuzzy matrices was given. In 

[13], the conditions of stabilization of power sequence 

for a given fuzzy matrix were discussed. 

Some results about the Boolean algebra and the 

(max, min) fuzzy algebra were generalized to more 

extensive algebraic structures, such as the distributive 

lattices [14-17], inclines [18-30], additively idempotent 

semirings [31], etc. Thus, the theory of fuzzy matrices 

was generalized to matrices over these extensive 

algebraic structures. 

In [14], the index and period for lattice matrices 

were estimated, necessary and sufficient conditions for 

convergence  of  the  powers  of  a  lattice  matrix  were  
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obtained, and conditions for a nilpotent lattice matrix 

were discussed. In [15], necessary and sufficient 

conditions for a matrix over a distributive lattice to be 

nilpotent were given. In [16], the eigenproblem of 

matrices over distributive lattices was presented. In 

[17], lattice-ordered effect algebras were proposed. 

Incline algebra, proposed by Cao et al. [18] in 1984, 

is a broader algebraic structure than a distributive 

lattice. Boolean algebra, max-min fuzzy algebra, and 

distributive lattices are examples of inclines. Han and 

Li [19] and Duan [20] studied the convergence of 

power sequence for the incline matrices. In [21], the 

invertible conditions for matrices over an incline were 

considered. In [22], standard bases of a finitely 

generated vector space over a linearly ordered 

commutative incline were studied. In [23], the group of 

all invertible matrices and the group of all permutation 

matrices over an incline were discussed. In [24], 

Cramer's rule over inclines was presented, and the 

group of invertible incline matrices was investigated. 

In [25], the invertibility of incline matrices and the 

existence of various generalized inverses were 

discussed. In [26], necessary and sufficient conditions 

for an incline Hall matrix to be regular were given. In 

[27], the regularity of incline matrices was considered. 

In [28], the invertible incline matrices and their ranks 

and Schein ranks were discussed. In [29], conditions 

for an element in an incline to be regular were 

obtained. In [30], a review of the algebraic structure of 

inclines, matrix theory over inclines, topological and 

convergence results, and some applications were 

presented. 
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Some ordered algebraic structures and their 

associated optimization problems were considered in, 

e.g., [31-49]. The combination of such algebraic 

structures with graph theory leads to some interesting 

applications in the optimization field.  

In [31], the classification of the additively 

idempotent semirings was considered. In [32,33], max-

plus algebra was introduced, and the walk model on it 

was presented. In [37, 38], the shortest path problems 

on digraphs, i.e., directed graphs, were investigated. 

Also, the shortest path models were simulated in water 

utilities [39] and transportation problems [40]. In [41], 

the shortest path problems on undirected graphs were 

examined.  

In [42], the reliability of paths in communication 

networks was studied. Similar reliability problems were 

considered in [43-45]. These problems all belong to 

optimization problems in the framework of ordered 

algebra. More general discussions were considered in 

[46-49]. 

This article considers matrices over an additively 

idempotent semiring, which is broader than incline 

algebra. The conditions for power convergence of a 

matrix over an additively idempotent semiring are 

investigated. Then we consider the generalized path 

optimization problem for a weighted digraph over an 

additively idempotent semiring. The problem is 

associated with the powers of the adjacency matrix of 

the weighted digraph. The classical matrix power 

method for the shortest path problem is proved to be 

still applicable for the generalized path optimization 

problem. The main results are presented in Section 3. 

2. PRELIMINARIES 

A semiring is an algebraic structure(𝐸, +,⋅) such 

that (𝐸, +) is an Abelian monoid (identity 𝑜), (𝐸,⋅) is a 

monoid (identity 𝑒), multiplication ⋅ distributes over 

addition + from either side, 𝑎 ⋅ 𝑜 = 𝑜 ⋅ 𝑎 = 𝑜 for all 𝑎 ∈

𝐸, and 𝑜 ≠ 𝑒. Usually, the semiring (𝐸, +,⋅) is denoted 

by 𝐸 briefly if the operations + and ⋅ are known, and we 

use the notation 𝑎𝑏 = 𝑎 ⋅ 𝑏. A semiring 𝐸 is additively 

idempotent (alias path algebra) if 𝑎 + 𝑎 = 𝑎 for all 𝑎 ∈

𝐸. 

In an additively idempotent semiring, we can define 

the partial order relation:  

𝑎 ≤ 𝑏 if and only if 𝑎 + 𝑏 = 𝑏. 

Then the following propositions hold:  

𝑜 ≤ 𝑎,                                                                               (1) 

𝑎 ≤ 𝑎 + 𝑏, 𝑏 ≤ 𝑎 + 𝑏 and 𝑎 + 𝑏 = 𝑠𝑢𝑝{ 𝑎, 𝑏},              (2) 

if 𝑎 ≤ 𝑏 then 𝑎 + 𝑐 ≤ 𝑏 + 𝑐, 𝑎𝑐 ≤ 𝑏𝑐,  𝑐𝑎 ≤ 𝑐𝑏.              (3) 

Proposition (2) means that if there is c such that 𝑎 ≤

𝑐, 𝑏 ≤ 𝑐, then 𝑎 + 𝑏 ≤ 𝑐. 

We stipulate naturally the infinite sum ∑ 𝑎𝑖 𝑖∈𝐼 exists 

if and only if 𝑠𝑢𝑝{ 𝑎𝑖|𝑖 ∈ 𝐼} exists and in this case 

∑ 𝑎𝑖𝑖∈𝐼 = 𝑠𝑢𝑝{ 𝑎𝑖|𝑖 ∈ 𝐼}.                                                   (4) 

An additively idempotent semiring is said to be an 

incline if 𝑎 + 𝑒 = 𝑒 for all 𝑎 ∈ 𝐸. In an incline, the 

following relations hold: 

𝑎 ≤ 𝑒,                                                                          (5) 

𝑎 + 𝑎𝑏 = 𝑎, 𝑏 + 𝑎𝑏 = 𝑏,                                               (6) 

𝑎𝑏 ≤ 𝑎, 𝑎𝑏 ≤ 𝑏.                                                             (7) 

A semiring 𝐸 is said to be selective if 𝑎 + 𝑏 = 𝑎 or 𝑏 

for all 𝑎, 𝑏 ∈ 𝐸. 

Let 𝐺 = (𝑉, 𝑈) be a digraph without multiple arcs 

(network), where 𝑉 = {1,2,⋯ , 𝑛} and 𝑈 are the vertex 

set and arc set, respectively. A path is a finite series of 

vertices 𝑝 = (𝑘0, 𝑘1, ⋯ , 𝑘𝑟), where (𝑘𝑠, 𝑘𝑠+1) ∈ 𝑈, 𝑠 =

0,1,⋯ , 𝑟 − 1. 𝑟 is the arc number of the path. If 𝑘0 = 𝑘𝑟 

then, the path 𝑝 is called a circuit. If any two vertices in 

𝑝 are different except that 𝑘0 = 𝑘𝑟 possibly holds, then 

the path 𝑝 is called elementary. The following notations 

are used: 

𝑃𝑖𝑗 : the set of all paths from vertex 𝑖 to vertex 𝑗. 

𝑃𝑖𝑗
𝑚: the set of all paths from vertex 𝑖 to vertex 𝑗, with 

exact 𝑚 arcs. 

𝑃𝑖𝑗
[𝑚]
: the set of all paths from vertex 𝑖 to vertex 𝑗, 

with at most 𝑚 arcs. 

𝑃𝑖𝑗
𝐸 : the set of all elementary paths from vertex 𝑖 to 

vertex 𝑗. 

Among the four sets, only the first is possibly 

infinite. For every arc (𝑖, 𝑗) ∈ 𝑈, associate a weight 

𝑤(𝑖, 𝑗) ∈ 𝐸. Such a digraph is called a weighted digraph 

over semiring 𝐸. For a path 

𝑝 = (𝑖, 𝑘1, 𝑘2, ⋯ , 𝑘𝑟 , 𝑗) ∈ 𝑃𝑖𝑗, 

We define its weight as  

𝑤(𝑝) = 𝑤(𝑖, 𝑘1) ⋅ 𝑤(𝑘1, 𝑘2) ⋅ ⋯ ⋅ 𝑤(𝑘𝑟 , 𝑗).                      (8) 

Define the adjacency matrix of the nth-order 

weighted digraph over a semiring as 𝐴 = (𝑎𝑖𝑗)𝑛×𝑛,  

where  

 𝑎𝑖𝑗 = {
𝑤(𝑖, 𝑗),  (𝑖, 𝑗) ∈ 𝑈,
 𝑜,   (𝑖, 𝑗) ∉ 𝑈.

                                         (9) 

Let 𝑀𝑛(𝐸) denote the set of all the nth-order square 

matrices over the semiring 𝐸. Define the addition 𝐴 + 𝐵 

and product 𝐴𝐵 of matrices in 𝑀𝑛(𝐸) like in a ring [50]. 

The (𝑖, 𝑗) entry of 𝐴 is denoted by 𝑎𝑖𝑗 or [𝐴]𝑖𝑗 . We use 

the notations  
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𝐴[𝑚] = 𝐴 + 𝐴2 +⋯+ 𝐴𝑚,                                           (10) 

𝑚 = {1,2,⋯ ,𝑚}.                                                        (11) 

Let 𝐴 ∈ 𝑀𝑛(𝐸). 𝐴 is called power-convergent if 𝐴𝑘 =

𝐴𝑘+1 for some positive integer 𝑘. If 𝐸 is additively 

idempotent, define  

𝐴 ≤ 𝐵 if and only if 𝑎𝑖𝑗 ≤ 𝑏𝑖𝑗 ,                                    (12) 

for all 𝑖, 𝑗 ∈ 𝑛. Eq. (12) defines a partial order over 

𝑀𝑛(𝐸).  

3. MAIN RESULTS 

Let 𝐴 be the adjacency matrix of an nth-order 

weighted digraph over a semiring 𝐸. It is easy to verify 

that 

 [𝐴𝑚]𝑖𝑗 = ∑
𝑛
𝑘1,⋯,𝑘𝑚−1=1

𝑎𝑖𝑘1𝑎𝑘1𝑘2⋯𝑎𝑘𝑚−1𝑗 =

∑𝑝∈𝑃𝑖𝑗
𝑚 𝑤(𝑝),                                                            (13) 

[𝐴[𝑚]]𝑖𝑗 = ∑𝑝∈𝑃
𝑖𝑗
[𝑚] 𝑤(𝑝),                                          (14) 

where the empty sum is 𝑜. Further, we have the 

following lemma.   

Lemma 1. Let 𝐴 be the adjacency matrix of a 

weighted digraph over an additively idempotent 

semiring 𝐸. If 𝐴 is power-convergent and 𝐴𝑘 = 𝐴𝑘+1, 

then the sum ∑ 𝑤(𝑝)𝑝∈𝑃𝑖𝑗
 exists, and 

[𝐴[𝑘]]𝑖𝑗 = ∑ 𝑤(𝑝)𝑝∈𝑃𝑖𝑗
.                                               (15) 

In particular, if 𝐴 ≤ 𝐴2 ≤ ⋯ ≤ 𝐴𝑘 = 𝐴𝑘+1 holds, then  

[𝐴𝑘]𝑖𝑗 = ∑𝑝∈𝑃𝑖𝑗 𝑤(𝑝).                                               (16) 

Theorem 1. Let 𝐴 = (𝑎𝑖𝑗) be an nth-order square 

matrix over an additively idempotent semiring 𝐸 and 

satisfy 𝑎𝑖𝑖 = 𝑒 for all 𝑖 ∈ 𝑛, and 𝑎𝑖𝑘1𝑎𝑘1𝑘2⋯𝑎𝑘𝑟𝑖 ≤ 𝑒 for 

any integer 𝑟 (1 ≤ 𝑟 ≤ 𝑛 − 1) and mutually distinct  

𝑖, 𝑘1, 𝑘2, ⋯ , 𝑘𝑟 ∈ 𝑛.  Then    

(i)    [𝐴𝑚]𝑖𝑖 = 𝑒 for any 𝑖 ∈ 𝑛 and 𝑚 ≥ 2, 

(ii)  𝐴 ≤ 𝐴2 ≤ ⋯ ≤ 𝐴𝑛−1 = 𝐴𝑛 = 𝐴𝑛+1 = ⋯, 

(iii) [𝐴𝑛−1]𝑖𝑗 = ∑ 𝑎𝑖𝑗1𝑎𝑗1𝑗2⋯𝑎𝑗𝑙𝑗 if 𝑖 ≠ 𝑗,  

where  denotes the sum for all 𝑙 (0 ≤ 𝑙 ≤ 𝑛 − 2) and 

mutually different 𝑗1, 𝑗2, ⋯ , 𝑗𝑙 ∈ 𝑛\{𝑖, 𝑗}. 

Proof: First, we can have more general inequality 

𝑎𝑖𝑘1𝑎𝑘1𝑘2⋯𝑎𝑘𝑟𝑖 ≤ 𝑒 for any integer 𝑟  ≥ 1. From  

𝑎𝑖𝑗 = 𝑎𝑖𝑖𝑎𝑖𝑗 ≤ [𝐴
2]𝑖𝑗 ,  

it follows 𝐴 ≤ 𝐴2 ≤ ⋯ ≤ 𝐴𝑛 ≤ ⋯. These inequalities 

imply (i).  

To prove (ii) we consider [𝐴𝑛]𝑖𝑗 for 𝑖 ≠ 𝑗. Since  

[𝐴𝑛]𝑖𝑗 = ∑
𝑛
𝑘1,⋯,𝑘𝑛−1=1

𝑎𝑖𝑘1𝑎𝑘1𝑘2⋯𝑎𝑘𝑛−1𝑗 , so, if 𝑘𝑟 =

𝑘𝑠,0 ≤ 𝑟 < 𝑠 ≤ 𝑛, 𝑘0 = 𝑖, 𝑘𝑛 = 𝑗, we get 

𝑎𝑖𝑘1𝑎𝑘1𝑘2⋯𝑎𝑘𝑛−1𝑗 ≤ 𝑎𝑖𝑘1𝑎𝑘1𝑘2⋯𝑎𝑘𝑟−1𝑘𝑟𝑎𝑘𝑠𝑘𝑠+1⋯𝑎𝑘𝑛−1𝑗  

      ≤ [𝐴𝑛−𝑠+𝑟]𝑖𝑗 ≤ [𝐴
𝑛−1]𝑖𝑗 .  

Thus 𝐴𝑛 ≤ 𝐴𝑛−1 is derived, and (ii) is proved.  

For (iii), from  

𝑎𝑖𝑗1𝑎𝑗1𝑗2⋯𝑎𝑗𝑙𝑗 ≤ [𝐴
𝑙+1]𝑖𝑗 ≤ [𝐴

𝑛−1]𝑖𝑗, 

we have 

ij
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where  denotes the sum for all 𝑙 (0 ≤ 𝑙 ≤ 𝑛 − 2) and 

mutually different 𝑗1, 𝑗2, ⋯ , 𝑗𝑙 ∈ 𝑛\{𝑖, 𝑗}.  

Conversely, for all 𝑘1, 𝑘2, ⋯ , 𝑘𝑛−2 ∈ 𝑛, repeatedly 

using the above deleting methods for the equal 

subscripts eventually results in 

              𝑎𝑖𝑘1𝑎𝑘1𝑘2⋯𝑎𝑘𝑛−2𝑗 ≤ 𝑎𝑖𝑗1𝑎𝑗1𝑗2⋯𝑎𝑗𝑙𝑗 ,  

where 0 ≤ 𝑙 ≤ 𝑛 − 2 and 𝑗1, 𝑗2, ⋯ , 𝑗𝑙 ∈ 𝑛\{𝑖, 𝑗} are 

mutually different. Accordingly,  

[𝐴𝑛−1]𝑖𝑗 = ∑

𝑛

𝑘1,⋯,𝑘𝑛−2=1

𝑎𝑖𝑘1𝑎𝑘1𝑘2⋯𝑎𝑘𝑛−2𝑗  

   ≤∑𝑎𝑖𝑗1𝑎𝑗1𝑗2⋯𝑎𝑗𝑙𝑗, 

where  denotes the sum for all 𝑙 (0 ≤ 𝑙 ≤ 𝑛 − 2) and 

mutually different 𝑗1, 𝑗2, ⋯ , 𝑗𝑙 ∈ 𝑛\{𝑖, 𝑗}. (iii) is proved. 

Hence, the theorem was proved. ■                           

It follows from Theorem 1 that 

Theorem 2. Let 𝐺 be an nth-order weighted digraph 

over an additively idempotent semiring 𝐸, and 𝐴 be its 

adjacency matrix satisfying 𝑎𝑖𝑖 = 𝑒 for all 𝑖 ∈ 𝑛. If 

𝑤(𝑝) ≤ 𝑒 holds for each elementary circuit 𝑝 of 𝐺, then  

 [𝐴𝑛−1]𝑖𝑗 = ∑𝑝∈𝑃𝑖𝑗 𝑤(𝑝) = ∑  𝑤(𝑝)𝑝∈𝑃𝑖𝑗
𝐸 .          (17) 

In particular, if the semiring 𝐸 is selective, then [𝐴𝑛−1]𝑖𝑗 

stands for the greatest element of the weights of paths 

in 𝑃𝑖𝑗, and the greatest element is achieved on some 

elementary path.  

If the additively idempotent semiring 𝐸 is an incline, 

then the following two corollaries are obtained. 

Corollary 1. Let 𝐴 = (𝑎𝑖𝑗) be an nth-order square 

matrix over an incline (𝐸, +,⋅). If 𝑎𝑖𝑖 = 𝑒 for all 𝑖 ∈ 𝑛, 

then  

(i)  [𝐴𝑚]𝑖𝑖 = 𝑒 for all 𝑖 ∈ 𝑛 and 𝑚 ≥ 2, 

(ii) 𝐴 ≤ 𝐴2 ≤ ⋯ ≤ 𝐴𝑛−1 = 𝐴𝑛 = 𝐴𝑛+1 = ⋯, 

(iii) [𝐴𝑛−1]𝑖𝑗 = ∑ 𝑎𝑖𝑗1𝑎𝑗1𝑗2⋯𝑎𝑗𝑙𝑗 if 𝑖 ≠ 𝑗,  

where  denotes the sum for all 𝑙 (0 ≤ 𝑙 ≤ 𝑛 − 2) and 

mutually different 𝑗1, 𝑗2, ⋯ , 𝑗𝑙 ∈ 𝑛\{𝑖, 𝑗}. 
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Corollary 2. Let 𝐺 be an nth-order weighted 

digraph over an incline 𝐸  and 𝐴 be the adjacency 

matrix satisfying 𝑎𝑖𝑖 = 𝑒 for all 𝑖 ∈ 𝑛. Then  

[𝐴𝑛−1]𝑖𝑗 = ∑ 𝑤(𝑝)𝑝∈𝑃𝑖𝑗
 = ∑  𝑤(𝑝)𝑝∈𝑃𝑖𝑗

𝐸 .                      (18) 

In particular, if the incline 𝐸 is selective then [𝐴𝑛−1]𝑖𝑗 

stands for the greatest element of the weights of paths 

in 𝑃𝑖𝑗, and the greatest element is achieved on some 

elementary path. 

4. SPECIAL CASES AND ILLUSTRATIVE 

EXAMPLES 

The following four cases belong to the models 

discussed above. In each case, the weighted digraph 

𝐺 = (𝑉, 𝑈) over semiring 𝐸 is nth-order with the vertex 

set 𝑉 = {1,2,⋯ 𝑛} and (𝑖, 𝑖) ∈ 𝑈 and 𝑎𝑖𝑖 = 𝑤(𝑖, 𝑖) = 𝑒 for 

all 𝑖 ∈ 𝑉. Let 𝑅 and 𝑅+ denote the real number set and 

nonnegative real number set, respectively. 

Case 1. The longest path problem [47,51,52] belongs 

to the path optimization for the weighted digraph over 

the additively idempotent semiring 

𝐸 = (𝑅 ∪ {−∞},𝑚𝑎𝑥, +), 𝑜 = −∞, 𝑒 = 0. 

 The weight 𝑤(𝑝) denotes the length of the path. If 

𝑤(𝑝) ≤ 0 for any elementary circuit 𝑝, then [𝐴𝑛−1]𝑖𝑗 

denotes the maximum length of paths from vertex 𝑖 to 

vertex 𝑗.  

If the additively idempotent semiring is 

 𝐸 = (𝑅+ ∪ {−∞},max,+), 𝑜 = −∞, 𝑒 = 0,  

the length is nonnegative in this case. The condition 

becomes for any elementary circuit 𝑝, it holds 

that 𝑤(𝑝) = 0. 

We note that in [32,33], the (max,+) linear algebra 

was discussed in detail. 

 

Figure 1: Weighted digraph used in Examples 1 and 2. 

Example 1. We consider the weighted digraph over 

semiring 𝐸 = (𝑅+ ∪ {−∞},max,+) in Figure 1. The 

adjacency matrix is 

𝐴 =

(

  
 

0 0 2 −∞ 4 −∞
0 0 1 4 2 −∞
−∞ −∞ 0 −∞ −∞ 7
−∞ −∞ 1 0 −∞ 2
−∞ −∞ −∞ 4 0 6
−∞ −∞ −∞ −∞ −∞ 0 )

  
 
. 

We checked that 𝐴5 = 𝐴6 and  

𝐴5 =

(

  
 

0 0 9 8 4 16
0 0 9 8 4 16
−∞ −∞ 0 −∞ −∞ 7
−∞ −∞ 1 0 −∞ 8
−∞ −∞ 5 4 0 12
−∞ −∞ −∞ −∞ −∞ 0 )

  
 
. 

For example, the maximum length of the path from 

vertex 2 to vertex 6 in Figure 1 is 16, which 

corresponds to the path p=(2,1,5,4,3,6). 

Case 2. The shortest path problem [53,54] belongs to 

the path optimization for the weighted digraph over the 

additively idempotent semiring 

𝐸 = (𝑅 ∪ {+∞},𝑚𝑖𝑛, +), 𝑜 = +∞, 𝑒 = 0. 

 If 𝑤(𝑝) ≥ 0 for any elementary circuit 𝑝 then 

[𝐴𝑛−1]𝑖𝑗 denotes the minimum length of paths from 

vertex 𝑖 to vertex 𝑗.   

If the semiring is  

𝐸 = (𝑅+ ∪ {+∞},𝑚𝑖𝑛, +), 𝑜 = +∞, 𝑒 = 0,  

which is an incline, the length is nonnegative in this 

case. 

Example 2. We consider the weighted digraph over 

the incline 𝐸 = (𝑅+ ∪ {+∞}, 𝑚𝑖𝑛, +) in Figure 1. The 

adjacency matrix is 

𝐴 =

(

 
 
 

0 0 2 +∞ 4 +∞
0 0 1 4 2 +∞
+∞ +∞ 0 +∞ +∞ 7
+∞ +∞ 1 0 +∞ 2
+∞ +∞ +∞ 4 0 6
+∞ +∞ +∞ +∞ +∞ 0 )

 
 
 
. 

We checked that 𝐴3 = 𝐴4 and  

𝐴3 =

(

 
 
 

0 0 1 4 2 6
0 0 1 4 2 6
+∞ +∞ 0 +∞ +∞ 7
+∞ +∞ 1 0 +∞ 2
+∞ +∞ 5 4 0 6
+∞ +∞ +∞ +∞ +∞ 0)

 
 
 
. 

For example, the shortest path from vertex 1 to 

vertex 6 in Figure 1 is 6, which corresponds to the path 

p= (1,2,4,6).  
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Figure 2: Weighted digraph used in Examples 3 and 5. 

Example 3. Consider the weighted digraph over the 

incline 𝐸 = (𝑅+ ∪ {+∞},𝑚𝑖𝑛, +) in Figure 2. The 

adjacency matrix is 

𝐴 = (

0 7 1 4
3 0 8 1
9 1 0 2
5 9 7 0

). 

We checked that 𝐴3 = 𝐴4 and 

𝐴3 = (

0 2 1 3
3 0 4 1
4 1 0 2
5 7 6 0

). 

For example, the shortest path from vertex 4 to 

vertex 2 in Figure 2 is 7, which corresponds to the path 

p= (4,1,3,2).  

Case 3. The maximum reliability path [42,55] problem 

corresponds to the path optimization for the weighted 

digraph over the incline 

𝐸 = ([0,1],𝑚𝑎𝑥,  ×),  𝑜 = 0, 𝑒 = 1. 

 The weight 𝑤(𝑝) denotes the reliability of the path. 

Then [𝐴𝑛−1]𝑖𝑗 denotes the maximum reliability of the 

paths from vertex 𝑖 to vertex 𝑗. 

 
Figure 3: Weighted digraph used in Example 4. 

Example 4. Consider the weighted digraph over the 

incline 𝐸 = ([0,1],𝑚𝑎𝑥,  ×) in Figure 3. The adjacency 

matrix is 

𝐴 =

(

 
 

1 0.4 0.2 0 0
0 1 0.8 0.6 0.5
0 0 1 0 0.8
1 0 0 1 0.7
0.2 0 0 0.6 1 )

 
 
. 

We checked that 𝐴4 = 𝐴5 and  

𝐴4 =

(

 
 

1 0.4 0.32 0.24 0.256
0.6 1 0.8 0.6 0.64
0.48 0.192 1 0.48 0.8
1 0.4 0.32 1 0.7
0.6 0.24 0.192 0.6 1 )

 
 
. 

For example, the maximum reliability of the path 

from vertex 3 to vertex 2 in Figure 3 is 0.192, which 

corresponds to the path p= (3,5,4,1,2). 

Case 4. The maximum capacity path [51,56] problem 

corresponds to the path optimization for the weighted 

digraph over the incline 

𝐸 = (𝑅+ ∪ {+∞},𝑚𝑎𝑥,𝑚𝑖𝑛), 𝑜 = 0, 𝑒 = +∞. 

The weight 𝑤(𝑝) denotes the capacity of the path. 

Then [𝐴𝑛−1]𝑖𝑗 denotes the maximum capacity of the 

paths from vertex 𝑖 to vertex 𝑗. 

Example 5. Consider the weighted digraph over the 

incline 𝐸 = (𝑅+ ∪ {+∞},𝑚𝑎𝑥,𝑚𝑖𝑛) in Figure 2. The 

adjacency matrix is 

𝐴 = (

+∞ 7 1 4
3 +∞ 8 1
9 1 +∞ 2
5 9 7 +∞

). 

We checked that 𝐴3 = 𝐴4 and  

𝐴3 = (

+∞ 7 7 4
8 +∞ 8 4
9 7 +∞ 4
8 9 8 +∞

). 

For example, the maximum capacity path from 

vertex 4 to vertex 1 in Figure 2 is 8, which corresponds 

to the path p= (4,2,3,1). 

5. CONCLUSION 

It was shown that the different path optimization 

problems could be united in a generalized path 

optimization model based on an additively idempotent  
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semiring. The classical matrix power method for the shortest path problem on the min-plus algebra was generalized 

to the generalized path optimization problem. For the adjacency matrix 𝐴 of the nth-order weighted digraph, the 

entry [𝐴𝑛−1]𝑖𝑗 gives the corresponding optimal value of paths from vertex 𝑖 to vertex 𝑗. The proposed generalized 

path optimization model includes the longest path problem, the shortest path problem, the maximum reliability path 

problem, and the maximum capacity path problem. 
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