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ABSTRACT

We investigate the existence of normalized solutions to the biharmonic equation with
combined pure-power and saturable nonlinearities:

g+ [uf?
14+ g+ |ul?

J. [ul?dx = c,
RN

where 5SS N<7 2<p<4:= %, u > 0is a parameter, 1 € R arises as a Lagrange
multiplier associated with the L2?-constraint, and —1< g <0 is a constant. By
employing variational methods and analyzing the problem on the Pohozaev manifold,
we establish the existence of ground state solutions in the L?-subcritical regime and
mountain-pass type solutions in the L2-supercritical regime.

(
Au+du= [ulPPu+pu inRY,
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1. Introduction

In this paper, we consider the existence of normalized solutions for the following biharmonic problem with a
saturable perturbation

g+lul? : N

T in RY,

1+g+|ul? (1.1
Jen lul?dx = c,

Au+Au=|ulP?u+u

where 5<N <7 2<p<4*u>0isaparameter, 1 € R appears as a Lagrange multiplier associated with the L2-
constraint, and —1 < g < 0 is a constant. This equation originates from the field of nonlinear optics, where it models
the propagation of laser beams in bulk media with higher-order dispersion effects. The biharmonic operator 42
accounts for fourth-order dispersion, which corrects the paraxial approximation error in traditional nonlinear
Schrodinger equation (NLS) and suppresses the finite-time blow-up of solutions, see [1, 2]. The L?-norm constraint
Jen lul?dx = ¢ corresponds to the conservation of beam power, a key physical quantity in optical propagation,

making the study of “normalized solutions" (solutions satisfying this constraint) physically meaningful. The saturable
g+lul®
1+g+ul?
change saturates at high intensities, thereby preventing unphysical blow-up. Unlike power-type nonlinearities, its
growth is bounded as the field intensity increases, avoiding unphysical infinite refractive index variations [3].

nonlinear term u u accurately describes the refractive index response of real optical materials, as the induced

When the saturable term is omitted (4 = 0), problem (1.1) reduces to the biharmonic Schrédinger equation with
pure-power nonlinearity:

A*u+ du=|ul’P?u, x€R",
(1.2)

Jon lul?dx = c.

This simplified model has been extensively studied in recent years, with progress being made across different
regimes of the exponent p. In the L?-subcritical case (2<p< 2+%), Bellazzini and Visciglia [4] established

foundational results. Under appropriate conditions on the spatial boundedness of the nonlinear coefficient, they
proved the existence of ground state normalized solutions and demonstrated the orbital stability of minimizers.
Their work utilized variational methods in the context of constrained minimization problems. For the L?-critical case
(p=2 +%), Phan [5] extended these results by incorporating an external potential, showing that ground state

solutions exist when the attraction strength parameter lies within a specific interval. This work highlighted the
delicate balance required for existence in the critical case and the significant influence of external potentials on the
solution structure. The L2-supercritical case (2 +%<p < 4*) presents additional challenges due to the lack of

compactness and the unboundedness of the energy functional from below on the constraint manifold. Liu and
Zhang [6] made substantial progress in this direction by verifying the Palais-Smale condition at the mountain-pass
level and proving that for sufficiently large p, radially symmetric non-negative normalized solutions exist. Their
analysis also revealed that the energy of these solutions tends to zero as ¢ — +oo, providing important qualitative
information about the solution behavior. Further generalizations were pursued by Zhang et al. [7], who considered
non-autonomous cases with spatially varying power nonlinearities of the form h(ex)|u|P~?u. They demonstrated
that when the scaling parameter ¢ is sufficiently small, the number of normalized solutions is at least equal to the
number of global maxima of the function h(x). This result established an interesting connection between the spatial
structure of the nonlinearity and the multiplicity of solutions. Although these works collectively provide a
comprehensive theoretical framework for biharmonic equation with pure-power nonlinearities, they inherently
cannot capture the saturation effects that are characteristic of real optical materials.

Before going to our concerns, we mention some results related to saturable nonlinearity due to its physical
relevance and mathematical interest. In 2017, Lin et al. [8] proved the existence of normalized ground state solutions
for the following problem
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2
J@Hul”_ u, x€E€RV,
1+1(x)+|ul? (1.3)

Jon lul?dx = c,

—Au+Au=yu

when I(x) # 0 and u > 0 is sufficiently large. In 2020, Wang and Wang [9] proved that, if I(x) is a radially symmetric
function, there exist multiple bump normalized solutions for problem (1.3), which are concentrated at the maximal
points of I(x). The investigation of fourth order equations with saturable nonlinearities was undertaken by Han [3].
More precisely, for N > 2 and sufficiently large u, he not only established radial ground state normalized solutions
to the following problem

1(x)+u? U
1+1(x)+u? (1.4)
fon lul?dx = c,

Au—Au+iu=u

but also derived explicit bounds for both the ground state energy and the Lagrange multiplier. However, it is worth
pointing out that problem (1.4) dose not take into account the influence of the pure-power nonlinearities on the
existence of normalized solutions.

Moreover, recent advances in approximation theory and iterative algorithms, such as generalized Stancu-Schurer
operators [10], viscosity-based iterative methods for nonlinear analysis [11], and fractional integral-type operators
preserving shape properties [12], provide valuable insights and potential numerical tools for future discretization
and computational studies of the problem considered here. Although the present work focuses on theoretical
existence results, these approximation techniques offer promising avenues for subsequent numerical
investigations.

From a physical perspective, the exponent p in the pure-power term |u|?~2u governs the strength of the nonlinear
Kerr effect. The different regimes of p correspond to distinct physical scenarios in beam propagation. L?-subcritical
case(2<p<2+ %): the nonlinearity is relatively weak compared to the dispersive effects. Ground state solutions

obtained via minimization typically correspond to stable, low-power beam profiles. L*-critical case (p = 2 + %): this

represents a threshold where the focusing nonlinearity and the dispersion are in a precise balance. The existence
of solutions becomes delicate and often depends sensitively on parameters like the prescribed power c. L?-
supercritical case (2 +8/N < p < 4*): the nonlinearity is dominant. This regime is associated with higher beam
powers where strong focusing can lead to complex beam structures and instability, necessitating more advanced
mathematical tools like the mountain-pass theorem on constraint manifolds to find solutions.

Motivated by the above discussion, the purpose of this paper is to present reasonable assumptions on ¢, p and
g to guarantee the existence of normalized solutions of problem (1.1). As usual, solutions of problem (1.1) can be
obtained as critical points of the energy functional J: H2(R") - R defined by

JQ): =2 o l8uldx =2 [ fulPdx =2 [ (luf? = in (1+ %)) dx (1.5)
on the constraint
S():= {u € H*RM)| [on lul?dx = c}. (1.6)
Here, H2(RN) is the Sobolev space
H2(RM) = {u € [2(RM): |du € [2(RM)},

which is equipped with the following norm
Nullyzeny: = (Jon [ul?dx + [y [dul?dx)?.
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Note that J is a well-defined and ¢?* functional on S(c) with its Fréchet derivative

g+lul?

uvdx
1+g+|ul?

J'W),v) = [onAu - Avdx — [ [ulP"?uvdx — p fon
for any u,v € H2(RV). Thus, one may consider the following minimization problem

o(c)= inf J(u)
ueS(c) (1 7)

to get normalized ground states of problem (1.1). Here, we say that u is a ground state of problem (1.1) if itis a
solution to problem (1.1) having minimal energy among all the solutions, namely,

JIs@y'@) =0 and J() = inf{JW)l/lsc)'(v) =0 and v € S(c)}.
Theorem1Llet5<N <7, u>0and—-1<g<0.The following statements hold:

e If2<p<p:=2+ % and ¢ > 0, the infimum defined in (1.7) is achieved by some w € S(c), which is a ground
state of problem (1.1) with the associated Lagrange multiplier 2 > %.

« If p < p < 47, there exists ¢ > 0 such that for every ¢ < ¢, problem (1.1) has a solution(w, 1) € H2(R¥) X R*. In
particular, we have

- _8-4p i )
Np-2N-8 — —_( — —
A > Kac 1+g (p—z g)'
where

8

14 2.p 2 \Np-2N-8
2N—p(N—4)) <B(N+4)(1+g)2—2MBpN CN,I-,CN)> S0

Ka:= ( Np-2N 2
(1+9)ZN(Np—2N)

This paper is organized as follows. In section 2. we present some preliminary results used to prove our main
results. In section 3, we give the detailed proof of Theorem 1.1, divided into two parts: the subcritical case 2 < p < p
and the supercritical case p < p < 4%, where variational methods and minimax techniques are employed to eatablish
the existence of normalized solutions.

2. Preliminaries

In this section, we recall and present several important inequalities and results that will be frequently used
throughout the paper.

Lemma 2 (Gagliardo-Nirenberg inequality [13, Section 3]) For every N > 5, there exists a constant Cy,
depending on N and t such that

lulle < CxellAullFllull;”™,  vu € H*(RY), vA)
where t € (2,4*] and y;: = %(i — %).
Lemma 3 For any a > 0, the following inequalities hold:

m(1+3)-—=20, vs>0

a+s

and

In(l+s)<s, Vs>0.
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Proof. Define h(s): = In(1+>) — —, Vs = 0. Compute its derivative

a _ s

R (s) = — >0,Vs >0,

ats (a+s)2 ~ (a+s)2 =

which means that h(s) is non-decreasing on s = 0. Since h(0) = 0, it gives that h(s) = h(0) = 0 for all s = 0. That is,
the first inequality holds.

Define g(s):= In(1+ s) —s, Vs > 0. Compute its derivative
' 1 s
g (s)=——1=—E<O,Vs>O.

1+s

Since g(0) = 0 and g(s) is strictly decreasing, it follows that g(s) < g(0) = 0 for all s > 0, which proves the second
inequality.

Lemma 4 ([4, Proposition 5.2]) Let {u,,} be a sequence bounded in H2(R") such that

lim {sup lu, & de= 0,
n—0 »VERN Bl(y)
where B, (y) denotes the ball of radius 1 centered at y. Then u,, —» 0 in LS(R") for 2 < s < 4*.

Lemma 5 ( Generalized Lebesgue Dominated Convergence Theorem [14, Theorem 2.22]) Suppose 2 is a
domain in RY, {u,}¥-, and u are measurable functions in 2 such that u, - u a.e. in 2. Then u,, » u in L*(2) if and
only if {¢, }5=1, d € L1(Q) exist such that ¢, » ¢ a.e.in 2, |u,| < ¢, a.e.in 2 for each n, and ¢, —» ¢ in L1(2).

We now demonstrate two essential estimates on the saturable nonlinearity.

Lemma6 If N > 5 and 2 < q < 4. Then, the following inequality holds

2 s? ) A g
sc—In(l+—)<—s“+ 751, Vs=0,
1+g 1+g

(1+9)2
where A, is given by
-2 4-q
Ap=EB 0 (2.2)
Proof. Let
—_ A1 _q__1 2 st
f(s):= (1+g)gs eS +in (1 + 1+g), Vs = 0.
Clearly, f(0) = 0 and a direct calculation shows that
, _ qu q-1 _i 2s
fiis) = (1+g)%s 1+g s+ 1+g+s?
= S( ququ—2+ 2 Z_L)’ Vs > 0.
(1+9)2 1+g+s 1+g

To obtain the desired inequality, it is sufficient to show that f'(s) = 0 for all s > 0.

2 ’ . .
For this purpose, set t: = ;—g. Then, f (s) = 0 is equivalent to

12t 224

Aq_ —tz2, Vt=0.
q 1+t
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2—q
Utilizing the monotonicity of%% t2 with respect to t > 0, we see that its maximum value is exactly 4,. That is,
we reach the conclusion.

Lemma 7 If N =5 and 2 < g < 4. Then, the following inequality holds

2
LSZSZ <9 g2, Fa 759, Vs >0,
1+g+s 1+g (1+g)§
where B, is given by
a+6  g-2 4-q
B - 22 (q=2) 4 (\/q+14’_3\/q_2) 2 (2 3)
a a(Ja+14-[q-2)3 ’ )
Proof. Let
SZ
k(s):=—15s9 ——s? =, Vs=0
(1+9)2 1+g 1+g+s
Clearly, k(0) = 0 and a direct calculation shows that
1) = Ba_gq-1_ 2 o, 25049)
k'(s) = 7S 1+gs (1+g+s2)?

(1+9)2

qBg q-2 2(1+9) 2
= s S + ——, Vs=>0.
((1+g)g (1+g+s2)? 1+g)

We aim to show that k’(s) = 0 for all s = 0, which implies k(s) = 0, and hence the desired inequality.
Sett:= %. Then, f'(s) = 0 is equivalent to

4—q
12(t+2)t 2
q (1+t)?

B, = , Vt=0.

q
4—q
2(t+2)t 2

Based on some direct analysis, we know that the maximum value of I

is precisely B,. As a consequence,

the lemma is proved.

Lemma 8 ([8, Lemma 5.2]) Suppose that h(x) = x — In(1 + x), x € [0, +). For givena >0, 8 > 0, and t € (0,1), if
[x —y|=afor0<x<pand0 <y < +o, then there exists ¢ > 0 such that

h(tx + (1 — £)y) < th(x) + (1 — h(y) — &.

Lemma 9 ([15, Theorem 1.2]) Let u € H?(R") be a weak solution to the equation

2
Au+ du=|uP?u+ uMu (2.4)

1+g+ulz
Then, u satisfies the Pohozaev identity

N-4 2 N@A-p) 24, = N _ BN L7
2 fn lAufPdx + X [ fufPdx = 2 [ fulPdx - fRNln(1+1+g)dx.

Furthermore, it holds that

Np-2N
Jen 1 ul?dzx —"E%

o lulPdx =20 [ (in (14 20) - Wy g (2.5)

1+g 1+g+|ul?

Following the idea of Soave [16], we introduce a constraint manifold M(c) that contains all the critical points of
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the functional J restricted to S(c¢). For each u € H2(R")\{0} and t > 0, denote by
N
uf(x): = tzu(tx),vx € RV,
A direct calculation gives that
t)12 2 t|2 4 2 t Np—zN
Iufll3 = ull,  fonlAufPdx = t* [y |AulPdx, [ lufPdx=t 2 [ |ulPdx

and

fRNln(1+|u|)dx ;\, RNln(1+t |ul)dx.

1+g

Define the fibering map t € (0, ) - f,(t): = J(u") as follows

Np—ZN

£, = fRN |Au|?dx — S lulPdx =2 [y ulPdx + 5 oy (14 ";' ) dx.

Calculating its first and second derivatives, we have

Np—
fi®) = 2% [y |Au)dx — Wt 5 [ [ulPdx ,
_ g ln(1+ﬂ)dx+ﬂf B LT (26
2tN+1JRN 1+g 2t JRN 14 g+¢Nju2
and
" Np—2N)(Np-2N-2) Np—2N-4
()= 662 [ |AufPdy - CEEOCEIND S lu[Pdx
UN(N+1) t IuI un? [ul?
HRTES f"’l (1+ )d 2t2 fRN 1+g+tN[u|2
uN Jul® uNth ? Jua]*
=202 Jan Trg+tNuz ™" 2 Jan (1+g+tN[u2)? dx.
Meanwhile, considering the Pohozaev functional
o 2. Np=2N p g BN Y P
Q= o ldul2dx — X222 [ juPdx = EX [y (in (1+1+g) 1+g+|u|2)dx,
we see that
N t12 __ Np-2N t1p __uN w7y [ut|?
Q@) = [ ldutPdx =222 [ putpax =2 [ (in (1420 - ) gy o
_ Np—2N  NP=2N uN eV uf? N Juf? '
= ¢ o lBulPdx =22 [y ulPdx — 55 [ in (1+ )d + Y v T
Obviously, (2.6) and (2.7) state that
t
2 = fie) = J . (2.8)

In particular, Q(u) = 0 corresponds to the Pohozaev identity (2.5). Hence, we can introduce the following subset
of S(¢)

M(c):={u€esS():Qu) =0}={uesS):f,(1) =0}
Moreover, from (2.8), we also recognize that, for any u € S(c), u*(x): = tgu(tx) belongs to M(c) if and only if t €

R* is a critical point of the fibering map £, (¢t), namely f,;(¢t) = 0. To proceed furthermore, we should split M(c) into
three parts corresponding to local maxima, local minima and points of inflection, that is,
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M*(0):= fu € S(O)Ifu(1) = 0,£,"(1) > 0},
M°(0):={u e S©Ifu(1) =0,£'1) =0},
M~ (c):= {u € S(Ifu(1) = 0,£,(1) < 03}.

Actually, for each u € M(c), we know that

" (Np—2N)(Np—2N-2) UN(N+1) luf?
V(1) = 6 oy |dul?dy — CPEIREED [ da + B [y in (14 ) dx

_uN(N+1)f [u)? —ﬂf ul*
Nitg+u? 2 JRN (14g+u|?)?

_ Np—2N » ul? ) uN [ul? )
= 6 2 o lulPdx + 5 v tn (141 B v oz dx
_ (Np—2N)(Np-2N-2) D ;uv(N+1) Jul®

CR2DEP2ED [ lulPdx + B2 [ i (1 + )dx
_ uN(N+1)f ul? _ uN* ful*
RN 14g+ul? 2 JRN (14g+[u|?)?
__ (Np—2N)(Np-2N-8) P UN(N+4) ( E)
= ——— Jaw lulPdx + =—— [y In(1+ rg) X
_uN(N+4)f [u]? _u_sz ul*
RN 14g+jul? 2 ‘RN (14+g+ul?)?

— — 2
= —(Np—2N-8) [ |Au|2dx+w(fwln(1+ Juf? )dx— . Jul dx)

1+g+|u|?
/,LN(N+4)( ( &) _ Juf? )_ BNZ ot
+ = (fenIn(1+ Ax = Jon g X 2 Jew (1+g+ul?)?

= —(Np—2N —8) [pu duf? dx+’”‘;p o (In (1+|u|) Juf? ) dx

1+g 1+g+|u|?

(2.9)

Iisz ul*
2 RN (14g+ul?)?

2
0N 48 s~ S 4 25 o1+ 8) )

1+g 1+g+|ul?
usz [ul*
2 RN (1+g+uf?)?

= (2N + 8) [, |4u|?dx — Np(f w |4ul? dx—TfN(ln(1+ﬁ)— [ul* )dx)

1+g 1+g+|ul?
uN? |u|*
2 JRN (14g+[u|?)?
N(Np-2N) UN? Ju|*
= 2N Au|?dx — ——F—=2 Py —
( + 8) fRN | ul dx 4 fRN |u| dx 2 RN (1+g+|u|2)2

3. Proof of Theorem 1
31.2<p<p

Lemma 10 Assumethat2 <p <p,u>0,g > —1and ¢ > 0. Then, J is bounded from below and coercive on S(c).

Proof. For any u € S(c), in view of (2.1), we see that

J) = fw lulPdx = [y lulPdx =5 o ulPdx +5 [ In(1+ 1) dx

N(l’ 2) 2N-p(N-4)

fRN |Au| dx __Cﬁp(fRN |Au| dx) ? u_c

2

When 2 < p < p, we have ——= (

) < 1, which implies that J is coercive and bounded from below on S(c).
Now we are ready to prove Theorem 1 (i).

Let {u,} c S(c) be a minimizing sequence for a(c). Then, {u,} is bounded in H#(R") by Lemma 10. First of all, we
claim that
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—_ 1 2
7= lim 51:{1])v J-Bl(y)|un| dx>0.

n—o0
e

(3.1

Assume on the contrary that n = 0. Lemma 4 infers that ||u, || = 0 asn — o for 2 < s < 4*. Together with Lemma
6 with 2 < g < 4, it yields that

C (C) 0 (1) ](u"ll)
szN Au‘ll (l:( prN u‘ll Ci:( 2 RN(l“’nl 111(1 +—))d{

1+g(x)
_1 2. _Hg 29, _ _HAq q
= 5 Jow MunlPdx = 20255 fow P =~ [ g + 0(1)
ugce
= ~Za+g) + 0(1).
. ___Hgc
Thatis to say, o = TR
Fixing u € S(c¢) and using Lemma 3, we have
4 Np—2N Ny, 2
t t 2 uc u t™u|
0(c) SJ () =5 fow l0ulPdx = —— [ lulPdx =5+ 5 [ in (1 4+ 550 ) dx
4 Np-2N 2
L 24, L 2 B Ul 3.2
<= Jon 14u|?dx . Jon lufPdx == +° v 1yg 4 (3.2)
4 Np-2N
_t 24, _t 2 _Ke( L
= 5 Jow Vul2dz = —— [y lulPdx =5 (1- ).
Since 2 < p < p, the above inequality implies that
uge
o(c) < ~2itg) (3.3)

which leads to an obvious contradiction. Thus, (3.1) holds.
According to (3.1), we can choose {y,} c R" to guarantee that

2 > ﬂ
fBl(Yn) |un|"dx = 2"

(3.4)
Let {w,, (x): = u,(x + y,)}, it gives that

S 18w |2dx = [on 1Aun|?dx,  fon [WalPdx = [on [unlPdx,

and

Jon (1wal? = 1n (1 +%)) dx = [ (lunl? = tn (14 %)) dx.

Therefore, {w,} is also a bounded minimizing sequence for a(c) on S(c) and

. 2 5.1
’111230.[31(0)| w, " dx= 5

Hence, we can assume that w,, = w in H*(RY), w,, > w # 0 in L?(B;(0)) and w,(x) - w(x) a.e. on B;(0). On the
basis of Egoroff's theorem, we can find a constant § > 0 such that

wy, (x) = w(x) uniformly in E and meas(E) > 0, (3.5)
where E c {x: |[w(x)| = §,x € B;(0)} c B,(0).
Next, we prove that ||[w||% = c. Assume on the contrary that p: = ||w||3 € (0, ¢). Let
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W: = —— and ¥,: = 2=
T J1itg T fitg’
then, from (3.5), it brings that
szg ?>O|nE (36)
and
7 =2 L 0in . 37)

As a direct application of Lemma 8, we can find a constant ¢ > 0 such that

fh (g ew? L emp (\/Eﬁn)zz) dv<—i+ ng b ((ﬁW)z) dx + %IE h (M) dx. (3.8)

c PwP? ¢ Pwp—wP3 PwP? Pwp—wP?

Meanwhile, observe that
Iwe 5 = llwy, = wllp + lIwllp + 0,(1) (3.9

and

Jon 228 dx = [ 117 + 19,17 dx + o(1),
there holds that

a(c) = ](Wn) +0(1)
=1 [ v ldwy|? dx—; o w P =2 o (Iwal? = 1 (1 +'W"' ))dx+o(1)

= zpc RN |A (;/vzvvpi) dx + 7 RN |A (M)

2c Pwy—wP,
P
~2(9) fn (pﬁ—;) " a3 (2) f| ()

kg Iwal? .- RN (M In (1 4 ol )) dx + o0(1)

dx

dx

2 JRN 14g 1+g
~ 2l o[ ax 4521, Iﬁ(fvifi‘wifj) dx

5O S G e =3 () Sl (R

_ kg [Wa? dx — fRNh(|Wn| )dx + 0(1)

dx

2 JRN 14g
B 2
= zpc RN |A (PWP2> f | (fvinwnw‘:j)
P
SHORM(E) dx—;(:”) S |Gz ax

_Hg RNMd ufRNh(C((ﬂwD )+c p (Jelnh)? )dx+o(1)

2 1+g PwP2 c Pwn wP2

o () e 2 o (S

2c Pwyn—wP,
14 14
S Gl = () funl Gl

n L wh (g Welw|)? n (?) Weln))? ) do

c PwP? Pwp—-wP?

dx

—7 (W2 + |vn| )dx +0(1)

2 2 | ()| e+ 52 [ (L)

Pwp—wP,
14
() |G
p \c RN PwP,

dx

dx

p 1 c—pg Vewn-w)\ P
dx = () fon | (Par?)
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) e ) o

Pwn—-wPj
— &2 [ (W1 + |5 )dx+o(1)
w Ve(wp-w)
] (PWPZ) c ( ) 3 + 0(1)

Pwn wPy

Ma and Zhang

cr(c) +£2 cr(c) + fy o(1)
>o(c) + 7 +0(1),

which is a contradiction. That is, w, -» w in L(RY). Hence, combining with Lemma 2 and Lemma 5, we derive that

. A § 2 |wl®
hij(l w, | —m(n Ddx=.[l{|w| —m[n Ddx
n—s0 ¥R 1+g R 1+g (3.10)

and

fim [y 1w, 1” de=[ |l dx
HJ N IRN (3.11)

for 2 < p < p. Moreover, due to w,, = w in H2(RY), we see that

| Aw|* dx < liminf | Aw, | dx.
.[RN P IRN (3.12)

Consequently, it follows from (3.10)-(3.12) that

a(c) =lmJ(w,)

n—o0

_ u |w, |’
hﬂ[ jN|A P dx——J.V|w l dx—szN(wn |2—1n(1+1+ngdx]
2
jN|Aw\ dx——.[ |wl dx——J. [|w —111[1+|W|Ddx
R l+g

20(0),
which indicates that a(c) is achieved atw # 0 and |lw,, — w||yz - 0 asn — oo.

Since w is a minimizer of J restricted to S(c), there exists a Lagrange multiplier 1 € R such that

do= = [ lAwl2dx + [y WIPdx + i [ -2C i p2dx
- RN RN lu RN

1+g+|w|?

2
= =200 =2 wlPdx — g fyn (WP =t (1+50) ) dx + [ wiPd + 1 o 1200w 2x
= —20(6)—— " |W|pdx—ufRN(|w|2 (1+'W' )) dx + [ IwlPdx

+‘U. fRN |W| dx — lufRN

1+g+|w|2

o p-2 . Wiy _ w2
= 20(c) + o JrN lwiPdx + p fRN (ln (1 + 1+g) 1+g+|W|2) dx
> —20(c),

where we have used Lemma 3 in the last inequality. This indicates that 1 > % by (3.3). The proof is completed.
32.p<p<4
In this subsection, we consider the case of p < p < 4*. For this situation, J is unbounded from below on S(¢), and

it is impossible to look for a global minimizer on S(c). To achieve our purpose, we shall use the Pohozaev manifold
M(c) defined in Section 2 to find critical points of J.
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Next, we firstly give a general minimax theorem to establish the existence of a Palais-Smale sequence.

Definition 11 ([17, Definition 3.1]) Let @ be a closed subset of X. We shall say that a class F of compact subsets
of X is a homotopy-stable family with closed boundary @ provided

* every setin F contains 0;

« foranysetH € F and any n € C([0,1] X X; X) satisfying n(s,x) = x for all (s,x) € ({0} x X) U ([0,1] x ©), we have
thatn({1} x H) € F.

Lemma 12 ([17, Theorem 3.2]) Let ¢ be a C!-functional on a complete connected C!-Finsler manifold X (without
boundary) and consider a homotopy stable family F of compact subsets of X with a closed boundary 6. Set

¢ = c(@,F) = inf max ¢(u),

HeF ueH
and suppose that

supp (0) <c.

Then, for any sequence of sets {H,} in F such that lim,.Sup, @ =c, there exists a sequence {u,} in X such

that

s lim,,0 @(u,) =c;
* limn—»oo”d(p(un)” =0;

* lim,,_, ., dist(uy,, H,) = 0.
Moreover, if d¢ is uniformly continuous, then u,, can be chosen to be in H, for each n.

Lemma 13 Assume that p<p <4*, —1<g<0 and let {u,} € M~(c) n H2(RY) be a bounded Palais-Smale
sequence for J restricted to S(c) at level 8. In addition, denote by

N

4(N+4-)(1+g)% *
cp: = (20292 ) (3.13)

_N2cP
uBpN CN.iJ

8

14 p X Np—2N-8

2(4(N+4)(1+g)2—uBi,NZCNi)cN)

A= 2N-p(N-4) [ ,
¢ 8 Cgp(1+g)2N(Np—2N)

(3.14)

. _ (1+9)@N-p(N-9)4c
T 2uN-pg(Np—2N)

and suppose that the following conditions hold

ﬁ>% and 0 <c <min{cy, ¢}

Then, up to a subsequence, u, - u, strongly in H2(R") and u, € S(c) is a solution of problem (1.1) for some 1 > 0.

Proof. Since {u,,} € M~(c) is bounded and the embedding HZ(R") & LS(RY) (N = 5) is compact for s € (2,4%), there
exists u, € H2(RV) such that u,, = u, weakly in H2(R"), u, = u, strongly in L(RV) for s € (2,4%), and a.e. in RN. By the
Lagrange multiplier rule, there exists 4,, € R such that for every ¢ € H*(R"),
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2
[ (DA + Ayt $)dx = fon [t P2t pdx = o 72ty pdx = o (D1l (3.15)

1+g+|un|?

where 0(1) - 0 as n — . In other words, u,, solves

Auy + Ay, = |ug|P%u, + u%un + o(1). (3.16)
In particular, one has
A = = [ Aty 2dx + [ [uy|Pdx + Mw% |, [2dx + o(1). (3.17)
Then, noting that
1 o 7 2] < 1t o Vit Pl] = Jatle (3.18)

and using the Gagliardo-Nirenberg inequality, we see that {1, } is bounded, since {u,} € M~(c) is bounded. So, we
are able to assume that 1, > 1 € Rasn — oo.

In the following, we shall determine the sign of A. In fact, Lemma 7 brings that

st < s*
(1+g+s2)2  — (1+g+s¥)(1+9)
_g+s? o g 2
- 1+g+szs 1+gs (3.19)
B
<—%:59 Vs=>0,
(1+9)2

where 2 < g < 4. Then, for {u,} € M~(c) n H?2(RY), thanks to (2.9), (3.19) and Lemma 2, we infer that

2 N(Np—2N) P N2 lunl®
fR” |dun|"dx < 8(N+4) fR” lun|Pdx + 4(1v+4) IRN (1+g+un|?)?
N(Np—ZN)f P By q
“sovia Jry lUnlPdx + Jon =g [un|%dx
8(N+4) “R 4(N+4) R (1+9)2
CR pN(Np—2N) 2N= p(N 0] 5 Np 2N
A — (Jon [Auy|?dx) &
uBgN2Cy ,  4a- Neg-2) 2N
——gc s (fRN |Au, |? dx)
4(N+4)(1+g)2
In the sequel, choose g =2 + % = p. Then, the above inequality becomes
N(Np 2N) 2N— p(N ) 1BpN 2¢ch 4
Jon 1wy |2 dx <: P e (fon Auy| dx) Mo N [ |Auy, |2 dx.
4-(N+4-)(1+g)2
On the assumption of 0 < ¢ < ¢, it immediately signifies that
Jon 14Uy |2dx > A, > 0. (3.20)

Therefore, taking into account that Q(u,) = 0, Lemma 3 and (3.20), we deduce that
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_ 2 g+lu |2 2
In€ = = [on [AunPdx + [y [up[Pdx + #fRleunl dx +o(1)
_ 2 ap 2,7, _ MN |un|2) I L ) )
= fRN |[du, |“dx + Np—2N (fRN |[Au,|*dx 4 fRN (ln (1 + 1+g 1+g+|un|? dx
g+lunl? 2
+/'lfRN1+g+|un|2 |un| dx+0(1)
_ 2N-p(N-4) 2. _ _KND ( ( Iunlz)_ unl? )
- Np-2N fRN | Aun|dx Np—2N /RN In{1+ 1+g 1+g+un|? dx
it [y 2l 20y 4 0(1)
RN 14 g+jun2'™™
2N—p(N—4) 2. _WNp (Iunl2 _ |unl? )
> Np—2N fRN | A, | Np—2NJRN \14+g  1+g+|un)?
2
oy =L 12dx + 0(1)
RN 14g+[u,2 '™
_ 2N-p(N-4) 2. _WND |un|*
- Np—2N fRN |duy|"dx Np—2N “RN (1+g)(1+g+|un|?)
i [y L 20y 4 o(1)
RN 14 g+[unf2 T
_ 2N-p(N-4) 2.9, _ _UND [unl|*
- Np-2N fRN |dun|"dx Np-2N ‘RN (1+g)(1+g+[un|?)

(1+9)(glunl*+ual*)
tH fRN A+g)(1+g+unl?) dx+o(1)

_ 2N-p(N-4) 2 ___kND

- Np—-2N fR”Mun| dx Np-2N 'RN (1+g)(1+g+[un|?)

4
[unl

glunl®+lunl*+g%lunl®+glual*
ey g X T o)

_ 2N-p(N-4) 2.5, _UND [unl|*
- Np-2N fRN |dun|"dx Np-2N ‘RN (1+g)(1+g+[un|?)
glun|* A +g+unl®)+lun|*

o T gt oM

_ 2N-p(N-4) 25 _UND Jun|*

- Np—2N fRN |duy |*dx Np—2N“RN (1+9)(1+g+|un|?)
9 P+ p [y — gy o(1)

11g JrN [Un K IRV gy arg+iunl®)
_ 2N-p(N-4) 2 ug 2
= —Np—ZN fRN |Aun| dx + E RN |un| dx

— ZﬂN |un|4
(1+g)(Np-2N) fRN T4 g+|un|? dx +0(1)

2N—p(N—4) 2uN

) e\ N
- Np—-2N Ac + 1+g ¢ (1+g)(Np—2N) c+o(l),
which implies that
7 < 2N-p(N-4) ug 2uN
>0 AR e e
A=z c(Np—2N) Ac + 1+g  (1+g)(Np-2N)’

Furthermore, taking advantage of the assumption 0 < ¢ < ¢;, there holds that

2N-p(N-4) ug 2uN

A2 c(Np-2N) ¢ " 1+g  (1+g9)(Np—2N) > 0.

Next, we claim that u, # 0. Assume on the contrary. Then, by compact embedding of HZ(RY) & LS(RY) with 2 <
s < 4* (N = 5), we have fRN |u, |Pdx = o(1). Subsequently, with the help of Q(u,) = 0 and Lemma 3, it yields that
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B +o(1)

where we have used Lemma 7 with 2 < g < 4. Clearly, this leads to a contradiction with g >

Ma and Zhang

J(un)

|un|
w1t P = [ [Pl = n

2
1+g ))dx

= Jan (g |* = In( 1 +

1 Np-2N D uN ( ( [un|? )_ [un|? )
2% 4p fR”lu”| dx + 4 fRN In(1+ 1+g 14g+|up|? )
2 o lunlPdx =2 o (1ual? = (1 +225)) ax
Np-2N-8 p uN ( ( |un| ) _ |unl? )
P fRNlun| dx + = fRN In 1+—1+g ot

2 fon (lal? = 0 (1 + 225)) ax

_ngN (|un|2 [unl? )d Ll fRN (1+g W) |u,|2dx + o(1)

_%fRN (|un|2 Iunl )d L fRN (1;1}9 _ 1+g+|1u+n;r—|iir2|un| )) 2 + o(1)
s+ e (%— ) fuy dx + o(1)

B

~stag; H O,

ulgle
2(1+g)’

and so uy # 0.

Finally, let us prove that u, — u, in H2(R"). Since u,, - uy in H2(R¥) and 1, » 1 > 0 as n - o, by (3.15), one has

Observe that

to finish the proof, it suffices to demonstrate that

T - g+ugl? _
Jan QoA + Augp)dx — [ [uo|P~?uopdx — HfRNmuoqf’dx =0, V¢ €HIRY). (3.21)
Taking ¢: = u,, —u, in (3.15) and (3.21), and subtracting, we arrive at
o) = [en(1A@n = up)* + Ay — uo|*)dx — [on([un P [unl — [uolP~?|uol) (un — up)dx -
g+unl® g+luol? (3.22)
~HJon (1+g+lun|2 Un T g uol? uo) (uy = uo)dx.
Jen (un P2 [un] = Tuo P72t ) (un — uo)dx = o(1), (3.23)
g+|un|? g+luol? _
Jon (Pt uy = 20 0) (= ug)dx = 0 (D). (3.24)
In fact, by the Holder's inequality, we have
+lup|?*
|fRN 1ig+17u |2 Un (y — uO)dx|
1
) 1
< (Fy it = 1l )P (| 722220 3 )
= g+unl? 0
< (f [1tn = wol? dx)P (fon | Stz 1 )
(3.25)

= 1
= ﬁ(fsz [u, — uol? dx)v(fRN [, |29 [,y |9 dx)q
= 1
= 15 U l1tn = 1o )P ([ [ |7 )

1
< C(fRN lun — uo P dx)?
-0,
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where max{2,— } < p < 4*. Similarly, we also have
g+luol?
|fRN 1+g+|ug|? Un (un uO)dx|

1

1
> g+lugl?
< (fw ltm = 2P )7 (fo | 722080 o |9 )

1 1
< (fon It = wolP )P (fo | T g dx)
1
< 1z (e T = 20l dx)P ([ It |27 1t | dx)7
1 2 1
< = (o Tt = w0l )P (oo 1t 29 ) ([ It |? gl

1
< C(fRN [un — uo|P dx)P

-0,

(3.26)

where max{ 2,%} < p < 4*. Together with (3.25) and (3.26) guarantee that (3.24 holds. As a consequence, it follows
from (3.22)-(3.24) that

Jan (1A Qun = up)|? + Ay — u|*)dx = o(1),
which implies that u,, - u, in H*(R"), since A > 0. This concludes the proof.

Lemma 14 Assume that p <p < 4*. Then, J is coercive and bounded from below on M(c) for all ¢ > 0.
Furthermore, there exists a constant ¢, > 0 such that for 0 < ¢ < ¢,, J is bounded from below by a positive constant
on M~(c¢).

Proof. For each u € M(c), taking advantage of Lemma 3, we see that

Ja) = 3 fo1Buldx =2 oy fulPdx = foy (uf? = in (14 25)) ax
- 1 2 2 uN [ul |ul?
- ZfRN |Au| d - RN |Au| dx Np—2N “RN (ln (1 + 1+g) 1+g+|u|2) dx
-t RN(|u|2 (1 +ﬂ))dx
= (__* Jul? ul?
— (2 Np_ZN) S [ dul?dx +Np o (ln(1 + 1+g) 1+g+|u|2) dx
- 1f;'+1;'”2 Juf?dx — £ RNW ful2dx +% [ In (141 ) g
- (i__4 |u| ul?
B (2 Np—ZN) fRN |4l N RN (l (1 + 1+g) 1+g+|u|2) dx (3.27)
I [ul u|? poeo gtul®
+E RN (ln (1 + 1+g) 1+g+|u|2) dx =3 RN 14 g+ul? | |2 dx
- G h Nz:ZN) Jaw |Aul?dx — E RN 1f;|+u|LIZ lul*dx
1 N u|? [u)?
i (E + Np—ZN) fRN (ln (1 + 1+g) 1+g+|u|2) dx
> (- —prZN) S 1dulZdx = [ Juldx

(G~ speam) Jow 1Al ne
which states that J is bounded from below and coercive on M(c).
When u € M~(c¢), following the argument in Lemma 13, we infer that
Jen 1Aul?dx > A, >0 for0<c<c,

where A, and ¢, are the same as in (3.20) and (3.13), respectively. Choose
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2 Np-2N-8

Coim 4(N+4) ﬁ(u(Nv—ZN))‘ +(p-2)
2 ch pN(Np—-2N) Np-2N-8 ’

a direct calculation brings that

Klgle
Jw) > 2atg) for0 <c<ec,. (3.28)

Lemma 15 Assume that p < p < 4*. Then, M°(c) = @ for 0 < ¢ < c,.

Proof. Suppose on the contrary and fix some u € M°(c). Similar to the argument of Lemma 13, we deduce that

8

2(4(N+4)(1+ )g B;N2cP %) Np=2N-=8
9)2-uBj 5C
Jon [du?dx > ( AL ) > 40 asc-0.

ZN-p(N—4) 7 (3.29)
¢ 8 C}\;’p(1+g)2N(Np—2N)
Moreover, by (2.9) and Lemma 3, there holds that
_oN — 24, = KNP ( ( ﬂ)_L) _BNZ et
(Np = 2N —8) [on [du|?dx = S (In (14 ra) " Trgvia dx —— [in REPES
< BN%p (ﬂ o w? ) _ N2 Ju|*
= 4 ‘RN\1+g  1+g+juf? 2 RN (14g+[uf?)?
2 4 2 4
__ kN“p . lul )dx—& N [u
4 JRY (1+g)(1+g+|ul? 2 YRV (1+g+|ul?)?
UN?p ul*
= 4(1+g) RN 14+g+|u|?
uN?pc
~ 4(1+g)
which means that
2y < __ uN’pc
Jon 14u)?dx < P TS 0 as c—0. (3.30)

Obviously, (3.29) and (3.30) lead to a contradiction. We finish the proof.

According to Lemma 15, it holds M(c) = M*(c) U M~(c), which is a natural constraint manifold. Next, let us prove
that the submanifold M~(c) is nonempty.

Lemma 16 Assume that p < p < 4*. Then, for any u € S(c), there exists a constant t; > 0 such that ut« € M~(c).
In particular, t; is a local maximum point of £, (t).

Proof. By Lemma 3, a direct calculation shows that

Np-2N Np—-2N-2

_ 3 2 uN tN|u2
fw@®= 26 fonldulde =22 [y ulPdx = S5 fow In (1+ - ) dx
uN [u)?
+ 2t fRN 1+g+tN|u?
_ Np—2N—-2 N |2 N [ul?
> 3 2 _ Np=2N (4 _ M = [l R Lol
> 263 [y |du|?dx el Jaw lulPdxc === [y Tl Jen PP TIE
. X Np—2N Np=2N-2 ) uN [uf? || (3.31)
= 263 fou [ dulPdx — L2 S lulPdx =22 f (E - THNWIZ) dx
3 s 5 _ Np—2N Np—2N—-2 . N ¢N=1 [y
= 2t fRNlAul dx 2p t 2 fRNlul dx 2 fRN 1+g)(1+g+tNu|?)
5 2.  Np-2N Np2N-2 b g uNENT1 4
> 2t7 [ v |du|?dx — L °® Jon [u|Pdx v Jon [u]* dx.

Since p > p, itis clear that f,,/(t) > 0 for t > 0 small enough by (3.31).
In addition, it follows from Lemma 3 again that
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Np—2N Np—-2N-2

fu® = 2t [y]Aul?dx - > b ? Jon u[Pdx

uN N2 uN
— SN fRN n (1 + —1+g ) dx + ZfRN

Np-2N Np—-2N-2
Tt 2 fplulPdx

ul?

14+g+tN|u|?

= 267 [y |du|?dx —

2p
uN (l ( t”lulz) tNul? )
- n(l+ - dx
2tN+1fRN 14g 14+g+tN|u 2
Np—-2N-2
3 2 Np-2N
< 263 [y |4yl dx—Tt Jen Ul dx.

Since p > p, the above inequality ensures that f,;(t) < 0 for t > 0 large enough. Note that, for u € S(c) and t > 0,
uf € M(c) ifand only if f,,/(t) = 0. Therefore, there exists a constant t; > 0 such that f,;(t;;)) = 0 and f;;'(t;;)) < 0, which
means that ut» € M~(c) and t; is a local maximum point of £, (¢).

From now on, we define
S,(c):=S(c) N HZ(RY), M,(c):=M(c)n HZ(RY) and M;(c):= M~(c) N HZ(RY). (3.32)
By virtue of Lemmas 14 and 16, one has

m_(c)= inf Jw)= inf J(u)>0.

ueM;(c) ueM™ (¢)

To apply Lemma 12 to construct a Palais-Smale sequence {u,} c M, (¢) for J restricted to S(c), we introduce the
following lemma.

Lemma 17 The map u € S,(c) » t; € R is of class C?.

_Proof. Consider the C*-function ¢: (0, %) x S,.(c) = R defined by ¢(t,u) = f,,(t). Since ¢(t;,u) =0, d,¢(t;,u) =
f v, the proof is completed by using the implicit function theorem.

Now we define the functional G™:S,(c) » R by G~(w):=J(u+). Clearly, it follows from Lemma 17 that the
functional G~ is of class €. We also need the following result.

Lemma 18 The map ¥:T,S,(c) = T, S-(c) defined by  — y* is isomorphism, where T,S,(c) denotes the
tangent space to S, (c) at u.

Proof. Let ¥ € T,S,.(c). Then, we have
- _ N N
S w QO ()dx = [on(t)2u(ty x) ()29 (trx)dx = [y u@)p(r)dy =0,

which implies that % € T ;S (c). Thus, the map ¥ is well defined.

For vy, ¢, € T,,S,(c) and Yk € R, it holds that

N - —
Wy +P2) = W1+ P2)' = ()21 (%) + Yo (2 0)) = Py + 1 = Y (1) + ¥ (2)

and

P (k) = (k) = kpy* = k¥ (y).

This shows that the map ¥ is linear. Finally, let us check that the map ¥ is a bijection. For viy,, ¥, € T,S,(c) with
P, # Py, since t; > 0, we see that

Wapy) = (6) 2y (6 x) # (62) 2, (t5 %) = ¥ ().
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Moreover, let y € T ;S (c) and define

Poo:= (6 2.

Then, it gives that
v ORI = [ (6 X CEE = o XN EDFU(ETY)Y = [y xPT Ry = 0,

which means that ¢ € T,,S,.(c). Moreover, ¥ (y) = (tu)gll)(tux) = (tu)g(tu)_g)((x) = y. Hence, ¥ is a bijection.
Lemma 19 It holds that (¢7)'(w)[¥] = J' (u*)[*] for any u € S,.(c) and ¥ € T,S,.(c).

Proof. Let u € S,(c) and ¥ € T,S,(c). Recall that G~(u) = J(u'), where t; > 0 is the constant guaranteed by
N

Lemma 16 such that ut» € My (c), and the scaling transformation v(x) = tzv(tx) preserves the L2-norm (i.e., ||[v¢||3
[lv]|3 for all t > 0 and v € H2(R"). Moreover, by Lemma 17, the mapping u ~ t; is of class C* on S,.(c).

Forsmall |h| > 0,setu, =u+ hdpandt;:=

ty,. Since t; is continuous in u, we have t, — t; as h - 0. The Gateaux
derivative of G~ at u along  is defined as

(GY@)(P) = lim w

By the fact that t; is the local maximum point of the function j(u"), we have
J((u + hep)m) — J(u')
< J((u+ he)th) — J(u'r)

= 2 (t)* onllAu + h)|? — |Au|?] dx

Np-2N
(th) 2z i)V luthe|?
— o [l + R Pdx =& [o [+ hPdx + 2B o In (1 + E00)
Np-2N -
(tp) 2 © 2 © &Nl
[ e = £ s 5 (14 |
Similarly,
J((u+ hep)tr) — J(ute)
> J((u+ hp)w) —J(u'v)
1 -
= ()" JenllA + he)|* — |Au|?] dx
R D)V urho 2
u w)|ut+
— O [l hlPdx =& [ [u + hp[2dx + ﬁfw In (1 + T) dx
Np—-2N N o
(tw) 2 K 2 u (t)N [ul
= [ o el = & o PP + 55 o n (14 S5 7) d"]'

Since fim,.f, =¢;, from the two inequalities above and utilizing the mean value theorem, it follows that
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- - Np-2N — N, 2
. G (uthed)-G (u +|t u
lim (u+ho) W _ gty ™ u|

ho0 n - (t'l:)4 fRN AuA¢dx - (t'l:) 2 fRN |u|p_2u¢dx —u fRN 1+g+|t§|N IuIZ u¢d‘x

Note that the Gateaux derivative of G~ is bounded linear in ¢ and continuous in u. Therefore, G~ is of class C*.
In particular, by changing variables in the integrals, we have

- - - - - tu2 - -
(67) (WIP] = fow Auth A — fon [uh |P-2utiglidx — p fon 10 utiptidx
=J ([,

The proof is complete.

Lemma 20 Assume that < p < 4* holds. Let F be a homotopy stable family of compact subsets of S,.(¢) with
closed boundary 6 and let

e = inf maxG ().

HeF ueH

Suppose that @ is contained in a connected component of M, (¢) and that max{sup G~ (0),0} < ef < o. Then,
there exists a Palais-Smale sequence {u,} c M; (¢) for J restricted to S,(c) at the level ef.

Proof. First of all, take {D,} c F such that MaXuen, G (u)<e: +l and define the map 7:[0,1] X S(c) — S(c) by
n(s,u) = ut~$*st, Since t; = 1 for any u € My (c) and & c M; (c), we hnave

n(s,u) = ufor (s,u) € ({0} x S,.(c)) U ([0,1] x O).
By the definition of F, it follows that
A,:=n({1} x D,) = {utv:u € D,} € F.

Clearly, 4,, € My (c) for alln € N. For any v € A,,, we have v: = u'* for some u € D,. Then, G~ (u) = J(u®) = J(v) =
G~ (v), which shows that

max G~ (u) = max G (u).

ueDn ueAn

Thus, {A,} € M; (¢) is an another minimizing sequence of ez. By Lemma 12, we obtain a Palais-Smale sequence
{v,} for G~ on S, (¢) at the level ef satisfying dist(v,, 4,) = 0 as n - oo. For each v, € S.(c), there exists a constant
t,. > 0 such thatu,: = v,i"” € M, (¢).

n

Next, we claim that there exists a constant C, > 0 such that
—<(t;)?<C, forneN. (3.33)
0
Indeed, we observe that

-
JrN |Avn”n|2dx

JrN [Avn|2dx

(t; ) =

Since](v;;") =G~ (v,) - eg, it follows from Lemma 14 that there exists a constant M, > 0 such that

L < [ 1Av P dx < My, (3.34)

My —
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Moreover, since {4,} € M, (¢) is a minimizing sequence for ez and J is coercive on M~(c), we know that {4,} is
uniformly bounded in H?(RV). Note that dist(v,,4,) = 0 as n > ®, SO sup,|lv,llz < . Meanwhile, since 4,, is
compact for each n € N, there exists a 7, € 4, such that dist(v,, 4,) = ||7, — v,|lyz. By Lemma 14, there exists a
constant § > 0 such that fRN|A1‘7n|2dx > ¢ for all n. Since ||, — v,lly2 = 0, we have |4, — Av,||,2 = 0. Thus, for

sufficiently large n,

Jew 18vn2dx = [on |40, |2 dx = [ 14wy — 5,) P dx 2

NS

(3.35)

Combining (3.34) and (3.35), we conclude that (3.33) holds.

In what follows, we show that {u,} € M; (¢) is a Palais-Smale sequence for J on §,.(c) at the level e;. Denote the
norm on the tangent space T, S, (c) by |||l and the dual norm on T;; S..(c) by ||-]l.. Then,

W'l = sup 10" (un), )| = sup " (), (P om)on). (3.36)

WETy, S-(O)I¥W<1 WETy, S (©)I¥ <1

By Lemma 18, the map ¥:T,, S,.(c) = T ¢, S.(c) defined by ¢ — Yt isisomorphism. Moreover, Lemma 19 implies
vﬂ.

that ((G7) (v,), ¥ ~n) = (J'(u,), ¥). Hence, we obtain from (3.36) that

W' w)ll. = sup (' (wn), ¥ = sup (G, (vn), W™ "om)|. (3.37)

WETy, Sr(0)|IP]I<1 WETy, Sr(0)|IP]Is1

By (3.33), we know that ||y~ || < C||y|| < C for some constant C > 0. Consequently, owing to [[(¢™)' (vl = 0
asn — oo, itimmediately follows from (3.37) that ||/’ (u,,)l. = 0. Thatis to say, {u,} € M; (c) is a Palais-Smale sequence
for J on S,(c) at the level e;.

Lemma 21 Assume that p < p < 4*. Then, there exists a Palais-Smale sequence {u,} c M, (c¢) for J restricted to

- ulgle
S.(c) at the level m; (¢) > TR

Proof. Based on Lemma 20, we choose the set F of all singletons belonging to S,.(¢) and @ = @, which is clearly a
homotopy stable family of compact subsets of S,.(c) (without boundary). Note that

eIE_:inﬁmaXG_(U)= inf G (w)= inf J(u)=m,(c),

HeF ueH ueSr((') ueM (¢)
»

the lemma follows directly from Lemma 20.

Now we are in the position to finish the proof of Theorem 1 (ii). By Lemma 21, there exists a Palais-Smale
sequence {u,} c M, (c) for J restricted to S(c) at level m; (¢) > %, which is bounded in H?(RM) via Lemma 14. So,
forp < p < 4%, according to Lemma 13, when

0 <c < é:=min{cy, cy,C2},

ulgle
2(1+9)

problem (1.1) admits a radially symmetric solution w satisfying J(w) = m; (¢) > for some 1 > 0.

Moreover, since Q(w) = 0, by (3.20) and Lemma 3, one has
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= 2N-p(N—4) 2 g+wl? 2
Alce= ———= Aw|“dx + dx
Np—2N le | l'l'f 1+ g+w |2| |
N w w|?
UNp N(ln( +||) [wi )dx
Np—2N 1+g 1+g+|w|2
2N—p(N—4) 2 2
> —A+ w|“dx — P —r— dx
Np-2N ”f"’l | ‘ufRN 1+y+IWI2| Wl
uNp (l ( IWI) [w|? )
- n(l+ —)dx
Np—2N “RN 1+g 1+g+|w|?
2N-p(N—4 c N w w|?
AN . o (Y €S i N i g
Np—2N 1+g Np-2N’R 1+g 1+g+|w|?
N e ) pge _ uNp (lwl2 [w|? )dx (3.38)
Np—2N € 1+g Np-2N’RN\1+g  1+g+|w|?
_  2N-p(N-49) Hge UNp i [wi*
Np—2N € " 1+g  (Np-2N)(1+g) RN 1+g+|w|?
> 2N-p(N-4) ugc uNpc
Np—2N ¢ 1+g (Np-2N)(1+g)
_2N-p(N-4)
= KZC Np—-2N-8 — i(N—p — g)
1+g \Np-2N
2N-p(N—4)
“~No—mN_s _ k¢ (P
= K,c Np-2N-8 __(__ )
2 1tg g

where

8

14 2 X\Np-2N-g8
<S(N+4)(1+g)2—2u8i,N chcN>

- _8-4p
A> KZCNp—zN—s —

_ (2N—p(N-4)
K _( Np—2N )
This indicates that
4. Appendix
Derivation of A,: Let g(t): = —tzg_q, it gives that

Ing (t) =
g®  _
g(®)
tmax
Hence, one has
2t 274
g(tmax) = 1_+tt 2
which brings that
A, = ;maxg ® = p
4-q
2(t+2)t 2

Derivation of B,: Considering h(t): = o7

(1+g)gN(Np—2N)

S
1+g

G=-9)

In(2t) + =Lint - In(1+1),

1,27 1 _47q_ 1
t 2t 1+t 2t 1+t
4=q
q-2
2(4-q) .
q-2 —q
=15 —) —(4 q)( )2
1+E q-2
4—q -2 4—q
4—q (4q)2 (q2)2(4q)2
e gy == .
a(q-2) 2
, we see that
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Inh(t)= In2(t+2)+=2int—2In(1+¢),

M 1 4-a,
n(t) T 24t 2

1 2
t 1+t

Letting h'(t) = 0, we deduce that (¢ — 2)t? + 3(q — 2)t + 2(q — 4) = 0, which yields that

-3(¢-2)+/9(a-2)?-8(q-2)(q-4)
2(q-2)
-3(q-2)+/(@-2)(9(q-2)-8(q—4))
2(q-2)
-3,/q-2+,/9(q-2)-8(q—4)
2/q-2
_ -3/q—2+/9q—18-8q+32
- 2/q-2
-3./q-2+,/q+14
2Jq—2

Substituting t,qx. Vq+21\/qi/_ into h(t), there holds that

Ja+1i-3ya-2 m 3ﬁ4
_ T 2Ja2
Jm 3J_2
Ja+1a- 3\/72+4\/7 W 3ﬁ4
¢ 2/iz 2jaz
2\/7+ Ja+1a— 3F 2
2,/q-2
Jm+J_ Jm 3J_2 4
(W Ji)z
2,/q-2
4=q _4=q
(Ja+14+/q-2)(2/q-2)"1(Jq+14-3,/q-2) 2 (2,/q-2) 2
(Ja+14-y/q-2)2(2,/q-2)72

a-2z 4-q
_ (q+14+{q-2)(2/q-2) 2 ({/q+14-3,/q-2) 2
(Ja+14-/q-2)?
=2 -2 4-
_ ZqT(q—Z)qT(‘/q+14+,/q—2)(,/q+14—3,/q—2)7q
(Ja+14-\/q-2)?

q-2 q-2 4-q
22 (q-2) 4 (q+14—q+2)(\/q+14-3,/q-2) 2
(Ja+14-\/q-2)3

q+6 q-2 4—q
_ 22 (q-2) * (Ja+14-3/q-2) %
(fa+14-/q-2)3 '

hmax

As a consequence, we obtain that

qt6 q-2 4-q

1 2°2 (q-2) 4 (Jq+14-3/q-2) 2

B, =-maxh(t) = .
© q(/a+14-/q-2)3

q
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