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ABSTRACT 

This paper discusses the dynamic event-triggered H∞ state estimation issue for 

memristive neural networks with time-delay under variance constraints. The dynamic 

event-triggered mechanism is incorporated into the sensor-to-estimator to reduce 

resource consumption in the communication channel. The objective is to design the 

time-varying state estimator such that, in the presence of the dynamic event-triggered 

mechanism and time-delay, new sufficient criteria are derived to ensure the desired 

H∞ performance and the boundedness of estimation error variance. Furthermore, a 

novel non-augmented H∞ state estimation algorithm is proposed under variance 

constraint by using the stochastic analysis techniques. Finally, a simulation example is 

used to illustrate the effectiveness of the proposed H∞ state estimation algorithm. 

 

 

©2025 Gao et al. Published by Avanti Publishers. This is an open access article licensed under the terms of the Creative Commons Attribution Non-

Commercial License which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly 

cited. (http://creativecommons.org/licenses/by-nc/4.0/) 

https://www.avantipublishers.com/
https://doi.org/10.15377/2409-5761.2025.12.10
http://creativecommons.org/licenses/by-nc/4.0/
https://orcid.org/0000-0002-3593-7237
https://orcid.org/0009-0005-6234-8090
https://orcid.org/0000-0002-7852-5064
https://orcid.org/0000-0003-1024-3201


Gao et al.  Journal of Advances in Applied & Computational Mathematics, 12, 2025 

 

144 

1. Introduction 

Over the past years, due to the important applications of neural networks (NNs) in practical systems such as 

optimization problems, pattern recognition and associative memory [1-3], many scholars have begun to pay 

attention to the research on related problems of NNs. With the deepening of research, the concept of memristor 

was proposed in [4], and researchers from Hewlett-Packard have also confirmed the existence of memristor in [5]. 

Memristor is the fourth new passive nano-information device following three basic circuit components of resistance, 

capacitance and inductance [6, 7]. Different from the existing devices, the memristor has the advantages of low 

energy consumption, non-volatility, small size and so on [8-10]. Actually, the memristor is very similar to biological 

synapses in both structure and function. Thus, more and more researchers use memristors to replace synapses in 

artificial NNs. Among the existing research results, the state estimation (SE) issue has attracted much attention and 

become an important research topic of memristive NNs (MNNs) [11-14]. Generally, the state of neurons is not 

completely measurable, we need to present an appropriate SE method to estimate the state of neurons [15-18]. For 

example, a new finite-horizon H∞ SE scheme has been proposed in [19] for MNNs, where both the time-delay and 

stochastic communication protocol have been taken into consideration, and a sufficient condition has been given 

to ensure the H∞ performance index. However, it is worth noting that the research on the H∞ SE problem for MNNs 

remains limited and thus deserves further investigation. 

Generally speaking, due to the fact that the circuit implementation of large-scale MNNs often consumes 

substantial resources, the problem of resource saving has become a hot topic for MNNs [20-22]. It is noteworthy 

that the dynamic event-triggered mechanism (DETM) can effectively save resources [23], which has a strong practical 

background, but unfortunately, it has received limited attention due to its mathematical complexity. In addition, 

most event-triggered mechanisms are static, that is, the threshold of the triggering condition is fixed (not adaptive 

or dynamic) [24, 25]. Up to now, there are few results regarding the SE problem of MNNs under DETM [26, 27]. 

Different from the static event-triggered mechanism, the DETM can reduce the frequency of event triggering, so as 

to avoid unnecessary data transmission and achieve satisfactory performance. For instance, in [27], the SE issue has 

been solved for delayed MNNs under DETM, where a sufficient condition has been given to ensure the desired H∞ 

performance requirement. Note that there are relatively few results regarding the variance-constrained H∞ SE 

problem for MNNs under DETM. In [28], the DETM has been adopted and the recursive distributed filtering 

algorithm has been proposed for discrete nonlinear systems. Based on the DETM in [28], this paper integrates the 

DETM into the multi-index framework to investigate the SE problem for MNNs. Consequently, in contrast to existing 

methods, sufficient criteria are derived to guarantee the desired H∞ performance and the error variance 

boundedness (EVB), and the multi-index SE algorithm is further proposed for MNNs from wider application 

viewpoint. As such, how to utilize DETM to coordinate massive data transmission between MNNs and a remote 

estimator has important practical significance, which is also one of the motivations of our research. 

Time-delay commonly occurs when signals are transmitted between neurons, mainly due to the limited 

communication time between neurons and the switching speed of amplifiers. In the networked environments, 

different types of time-delay issues have attracted increasing research attention because the existence of time-

delays leads to undesired oscillations or even instability [29-31]. Specifically, in [32], a new event-based extended 

dissipative SE method has been proposed for memristor-based Markovian NNs with time-varying delays. In [33], 

the H∞ SE problem has been addressed for NNs with mixed time-varying delays, and a sufficient condition has been 

derived to guarantee the desired H∞ performance requirement [34, 35]. It should be noted that the time-delay effect 

may degrade the estimation performance. Recently, an H∞ SE method has been proposed in [36] for recurrent NNs 

with time-varying delays, where sufficient conditions have been derived to guarantee the H∞ performance index. In 

addition, the SE method under variance constraints is capable of offering a more relaxed technical approach that 

can characterize the allowable accuracy of the proposed H∞ state estimation algorithm. Up to now, novel H∞ SE 

algorithms have been presented in [37] and [38] for time-varying systems under variance constraint. Motivated by 

the above results, we attempt to address the H∞ variance-constrained SE problem for MNNs with time-delay under 

DETM. 

Summarizing the above discussions, the main aim is to propose a new H∞ SE algorithm for MNNs subject to time-

delay under DETM, which can guarantee two requirements including the H∞ performance index and the EVB. The 
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key technical challenges we tackled are as follows: i) How to propose appropriate method to handle the effects of 

activation function? ii) How to ensure the satisfactory estimation performance by utilizing the proper constraint? iii) 

How to develop a finite-horizon approach to address the recursive SE problem for MNNs with time delays via DETM 

under the framework of recursive performance requirement? The corresponding solutions are elaborated as 

follows: 1) By resorting to the sector-bounded condition, the conditions with respect to the nonlinear activation 

function are derived in Lemmas 1-2; 2) In the design of the state estimation algorithm, we simultaneously consider 

two performance constraints, namely the H∞ performance and the EVB; 3) Sufficient criteria are established to verify 

that the proposed H∞ SE method via DETM meets the desired H∞ performance requirement and the EVB. Specifically, 

both the disturbance attenuation capability and flexible estimation accuracy are guaranteed through the recursive 

linear matrix inequalities (RLMIs) technique. The primary innovations are summarized below: i) the dynamic event-

triggered H∞ SE issue is investigated for MNNs subject to time-delay under variance constraint; ii) the DETM is 

incorporated into the design of time-varying state estimator (TVSE) of MNNs for the purpose of saving energy; and 

iii) the proposed H∞ SE algorithm under variance constraints exhibits time-varying characteristics via solving 

recursive linear matrix inequalities (RLMIs), which is suitable for online applications. 

Notations: The superscript 𝑇, 𝔼{. }, ℝ𝑟,diag{… } and ∗ stand for the transpose of the matrix, the mathematical 

expectation, the 𝑟 -dimensional Euclidean space, the block diagonal matrix and the ellipsis for term resulting from 

symmetry, respectively. The full names and abbreviations are given as follows: 

Table 1: Definitions of full names and abbreviations. 

Full Name Abbreviation 

Neural networks NNs 

Memristive neural networks MNNs 

Dynamic event-triggered mechanism DETM 

State estimation SE 

Estimation error EE 

Time-varying state estimator TVSE 

Error variance boundedness EVB 

Recursive linear matrix inequalities RLMIs 

Positive-definite real-value matrix PDRVM 

 

2. Problem Formulation 

In order to reduce unnecessary waste of computing resources, the DETM is adopted. As illustrated in Fig. (1), a 

dynamic event-triggered H∞ SE method is proposed for MNNs with variance constraint. 

 

Figure 1: Dynamic event-triggered H∞ SE for MNNs framework. 
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In this paper, we consider the MNNs with time-delay described as follows: 

 𝑥𝑠+1 = 𝐴(𝑥𝑠)𝑥𝑠 + 𝐴𝜏(𝑥𝑠)𝑥𝑠−𝜏 + 𝐵(𝑥𝑠)𝑓(𝑥𝑠) + 𝐶𝑠𝑣1𝑠 

 𝑥𝑠 = 𝜙𝑠, ∀𝑠 ∈ {−𝜏, −𝜏 + 1,… ,0}  (1) 

where 𝑥𝑠 ∈ ℝ
𝑛 depicts the state vector of MNNs, 𝐴(𝑥𝑠) = diag𝑛{𝑎𝑖(𝑥𝑖,𝑠)} stands for the state coefficient matrix, 𝐴𝜏(𝑥𝑠) 

denotes the delayed connection weight matrix, 𝐶𝑠 represents known real matrix with suitable dimensions, and 𝐵(𝑥𝑠) 

depicts the connection weight matrix. 𝜙𝑠 denotes a given initial sequence, 𝑓(𝑥𝑠) stands for the nonlinear activation 

function, and 𝑑 is the time-delay. 𝑣1𝑠 denotes zero-mean white noise with covariance 𝒱1𝑠 > 0. 

The activation function 𝑓(⋅): ℝ𝑛 ↦ ℝ𝑛 obeys 𝑓(0) = 0 and satisfies the sector-bounded condition given as follows: 

 [𝑓(𝛼) − 𝑓(𝛽) − 𝐔1(𝛼 − 𝛽)]
𝑇[𝑓(𝛼) − 𝑓(𝛽) − 𝐔2(𝛼 − 𝛽)] ≤ 0,  ∀𝛼, 𝛽 ∈ ℝ

𝑛  (2) 

where 𝑼1 and 𝑼2 depict known matrices, and 𝑼 = 𝑼2 −𝑼1 stands for the symmetric positive definite real value 

matrix (PDRVM). 

According to [39], the state-dependent functions 𝑎𝑖(𝑥𝑖,𝑠), 𝑎𝑖𝑗,𝜏(𝑥𝑖,𝑠) and 𝑏𝑖𝑗(𝑥𝑖,𝑠) satisfy the following conditions: 

𝑎𝑖(𝑥𝑖,𝑠) =
1

𝐶𝑖
[∑(

1

𝑅𝑎𝑖𝑗,𝜏
+

1

𝑅𝑏𝑖𝑗
)

𝑛

𝑗=1

sign𝑖𝑗 +
1

𝑅𝑖
] = {

𝑎̂𝑖 , |𝑥𝑖,𝑠| > Γ𝑖

𝑎̆𝑖 , |𝑥𝑖,𝑠| ≤ Γ𝑖
 

𝑎𝑖𝑗,𝜏(𝑥𝑖,𝑠) =
sign𝑖𝑗
𝐶𝑖𝑅𝑎𝑖𝑗,𝑑

= {
𝑎̂𝑖𝑗,𝜏 , |𝑥𝑖,𝑠| > Γ𝑖

𝑎̆𝑖𝑗,𝜏 , |𝑥𝑖,𝑠| ≤ Γ𝑖
 

𝑏𝑖𝑗(𝑥𝑖,𝑠) =
sign𝑖𝑗
𝐶𝑖𝑅𝑏𝑖𝑗

= {
𝑏̂𝑖𝑗 , |𝑥𝑖,𝑠| > Γ𝑖

𝑏̆𝑖𝑗 , |𝑥𝑖,𝑠| ≤ Γ𝑖
 

where 𝛤𝑖 > 0, |𝑎̂𝑖| < 1, |𝑎̆𝑖| < 1, 𝐶𝑖 denotes the capacitor, 𝑅𝑖 stands for the parallel-resistor, 𝑅𝑎𝑖𝑗,𝜏 and 𝑅𝑏𝑖𝑗 are, 

respectively, the delayed connection weight matrix and the connection weight matrix. 𝑎̂𝑖𝑗,𝜏, 𝑎̆𝑖𝑗,𝜏, 𝑏̂𝑖𝑗  and 𝑏̆𝑖𝑗  are known 

scalars. Additionally, the symbolic function satisfies the following condition 

sign𝑖𝑗 = {
1,    𝑖 ≠ 𝑗
−1,  𝑖 = 𝑗

 

Denoting 

𝑎𝑖
− = 𝑚𝑖𝑛{ 𝑎̂𝑖, 𝑎̆𝑖}, 𝑎𝑖

+ = 𝑚𝑎𝑥{ 𝑎̂𝑖 , 𝑎̆𝑖}, 𝑎𝑖𝑗,𝜏
− = 𝑚𝑖𝑛{ 𝑎̂𝑖𝑗,𝜏, 𝑎̆𝑖𝑗,𝜏} 

𝑎𝑖𝑗,𝜏
+ = 𝑚𝑎𝑥{ 𝑎̂𝑖𝑗,𝜏, 𝑎̆𝑖𝑗,𝜏}, 𝑏𝑖𝑗

− = 𝑚𝑖𝑛{ 𝑏̂𝑖𝑗 , 𝑏̆𝑖𝑗}, 𝑏𝑖𝑗
+ = 𝑚𝑎𝑥{ 𝑏̂𝑖𝑗 , 𝑏̆𝑖𝑗} 

𝐴+ = diag
𝑛
{𝑎𝑖
+}, 𝐴− = diag

𝑛
{𝑎𝑖
−}, 𝐴𝜏

+ = {𝑎𝑖𝑗,𝜏
+ }𝑛×𝑛 

𝐴𝜏
− = {𝑎𝑖𝑗,𝜏

− }𝑛×𝑛, 𝐵
+ = {𝑏𝑖𝑗

+}𝑛×𝑛, 𝐵
− = {𝑏𝑖𝑗

−}𝑛×𝑛 

then we have 𝐴𝜏(𝑥𝑠) ∈ [𝐴𝜏
−, 𝐴𝜏

+], 𝐴(𝑥𝑠) ∈ [𝐴
−, 𝐴+] and 𝐵(𝑥𝑠) ∈ [𝐵

−, 𝐵+]. By defining 𝐴̄𝜏 ≜
𝐴𝜏
++𝐴𝜏

−

2
= (

𝑎𝑖𝑗,𝜏
+ +𝑎𝑖𝑗,𝜏

−

2
)
𝑛×𝑛

, 𝐴̄ ≜

𝐴++𝐴−

2
= diag {

𝑎1
++𝑎1

−

2
,
𝑎2
++𝑎2

−

2
, … ,

𝑎𝑛
++𝑎𝑛

−

2
} and 𝐵̄ ≜

𝐵++𝐵−

2
= (

𝑏𝑖𝑗
++𝑏𝑖𝑗

−

2
)
𝑛×𝑛

, the matrices 𝐴(𝑥𝑠), 𝐴𝜏(𝑥𝑠) and 𝐵(𝑥𝑠) are further 

expressed by 

 𝐴(𝑥𝑠) = 𝐴̄ + Δ𝐴𝑠, 𝐴𝜏(𝑥𝑠) = 𝐴̄𝜏 + Δ𝐴𝑑𝜏, 𝐵(𝑥𝑠) = 𝐵̄ + Δ𝐵𝑠  (3) 

where Δ𝐴𝑠 ∈ [−
𝐴+−𝐴−

2
,
𝐴+−𝐴−

2
], Δ𝐴𝑑𝜏 ∈ [−

𝐴𝜏
+−𝐴𝜏

−

2
,
𝐴𝜏
+−𝐴𝜏

−

2
] and Δ𝐵𝑠 ∈ [−

𝐵+−𝐵−

2
,
𝐵+−𝐵−

2
]. Let Δ𝐴𝑠 = ∑ 𝑒𝑖

𝑛
𝑖=1 𝑢𝑖,𝑠𝑒𝑖

𝑇, Δ𝐴𝑑𝜏 =

∑ 𝑒𝑖
𝑛
𝑖,𝑗=1 𝜓𝑖𝑗,𝑠𝑒𝑗

𝑇 and Δ𝐵𝑠 = ∑ 𝑒𝑖
𝑛
𝑖,𝑗=1 𝑣𝑖𝑗,𝑠𝑒𝑗

𝑇. Here, 𝑒𝑖 ∈ ℝ
𝑛 stands for the column vector with the 𝑖 -th element being 1 
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and others being 0. Unknown scalars 𝑢𝑖,𝑠, 𝜓𝑖𝑗,𝑠 and 𝑣𝑖𝑗,𝑠 satisfy |𝑢𝑖,𝑠| ≤ 𝑎̃𝑖, |𝜓𝑖𝑗,𝑠| ≤ 𝑎̃𝑖𝑗,𝜏 and |𝑣𝑖𝑗,𝑠| ≤ 𝑏̃𝑖𝑗 with 𝑎̃𝑖 =
𝑎𝑖
+−𝑎𝑖

−

2
, 

𝑎̃𝑖𝑗,𝜏 =
𝑎𝑖𝑗,𝜏
+ −𝑎𝑖𝑗,𝜏

−

2
 and 𝑏̃𝑖𝑗 =

𝑏𝑖𝑗
+−𝑏𝑖𝑗

−

2
. Furthermore, the unknown parameter matrices Δ𝐴𝑠, Δ𝐴𝑑𝜏 and Δ𝐵𝑠 can be written as 

Δ𝐴𝑠 = 𝐻𝐹1,𝑠𝑁1, Δ𝐴𝑑𝜏 = 𝐻𝐹2,𝑠𝑁2, Δ𝐵𝑠 = 𝐻𝐹3,𝑠𝑁3 

where 

𝐻 = [𝐻1 𝐻2 ⋯ 𝐻𝑛], 𝐻𝑖 = [𝑒𝑖 𝑒𝑖 ⋯ 𝑒𝑖]⏟          
𝑛

,   (𝑖 = 1,2, … , 𝑛) 

𝑁𝑙 = [𝑁𝑙1 𝑁𝑙2 ⋯ 𝑁𝑙𝑛]
𝑇 , (𝑙 = 1,2,3) 

𝑁1𝑖 = [𝑒1 ⋯ 𝑒𝑖−1 𝑎̃𝑖𝑒𝑖 𝑒𝑖+1 ⋯ 𝑒𝑛] 
𝑁2𝑖 = [𝑎̃𝑖1,𝜏𝑒1 𝑎̃𝑖2,𝜏𝑒2 ⋯ 𝑎̃𝑖𝑛,𝜏𝑒𝑛], 𝑁3𝑖 = [𝑏̃𝑖1𝑒1 𝑏̃𝑖2𝑒2 ⋯ 𝑏̃𝑖𝑛𝑒𝑛] 

𝐹𝑙,𝑠 = diag{𝐹𝑙1,𝑠, 𝐹𝑙2,𝑠, … , 𝐹𝑙𝑛,𝑠}, (𝑙 = 1,2,3), 𝐹1𝑖,𝑠 = diag {0, … ,0⏟    
𝑖−1

, 𝑢𝑖,𝑠𝑎̃𝑖
−1, 0, … ,0⏟  

𝑛−𝑖

} 

𝐹2𝑖,𝑠 = diag{𝜓𝑖1,𝑠𝑎̃𝑖1,𝜏
−1 , 𝜓𝑖2,𝑠𝑎̃𝑖2,𝜏

−1 , … , 𝜓𝑖𝑛,𝑠𝑎̃𝑖𝑛,𝜏
−1 }, 𝐹3𝑖,𝑠 = diag{𝑣𝑖1,𝑠𝑏̃𝑖1

−1, 𝑣𝑖2,𝑠𝑏̃𝑖2
−1, … , 𝑣𝑖𝑛,𝑠𝑏̃𝑖𝑛

−1} 

with 𝐻 and 𝑁𝑙 being known matrices. It is easy to verify that 𝐹𝑙,𝑠 satisfies 𝐹𝑙,𝑠
𝑇 𝐹𝑙,𝑠 ≤ 𝐼. 

The measurement output and controlled output are given as follows: 

 𝑦𝑠 = 𝐷𝑠𝑥𝑠 + 𝐸𝑠𝑣2𝑠 

𝑧𝑠 = 𝑀𝑠𝑥𝑠  (4) 

where 𝑦𝑠 ∈ ℝ
𝑚 stands for the measurement output, 𝑧𝑠 ∈ ℝ

𝑟 stands for the controlled output, 𝐷𝑠, 𝐸𝑠 and 𝑀𝑠 are known 

matrices with proper dimensions, and 𝑣2𝑠 stands for zero-mean white noise with covariance 𝒱2𝑠 > 0. In what follows, 

assume that 𝑥0, 𝑣1𝑠 and 𝑣2𝑠 are mutually independent. 

To save resources, the dynamic event generator is designed between the sensor and the state estimator. 

Moreover, the triggering instant sequence is denoted by 0 ≤ 𝑡0 < 𝑡1 < ⋯ ≤ 𝑡𝑙 < ⋯, where 𝑡𝑙+1 is defined as the 

following rule 

 𝑡𝑙+1 = min {𝑠 ∈ [0, 𝑁]|𝑠 > 𝑡𝑙,
1

𝜃
𝜂𝑠 + 𝜎 − 𝜀𝑠

𝑇𝜀𝑠 ≤ 0}  (5) 

where 𝜎 > 0 and 𝜃 > 0 are given scalars, 𝜀𝑠 = 𝑦𝑠 − 𝑦𝑠𝑡𝑙
, 𝑦𝑠𝑡𝑙

 depicts the transmitted measurement at latest event time, 

and 𝜂𝑠 depicts the internal dynamic variable obeying 

 𝜂𝑠+1 = 𝜆𝜂𝑠 + 𝜎 − 𝜀𝑠
𝑇𝜀𝑠  (6) 

where 𝜆 > 0 depicts the known constant and 𝜂0 ≥ 0 stands for the known initial condition. 

In this paper, the TVSE is designed as follows: 

𝑥̂𝑠+1 = 𝐴̄𝑥̂𝑠 + 𝐴̄𝜏𝑥̂𝑠−𝜏 + 𝐵̄𝑓(𝑥̂𝑠) + 𝐾𝑠 (𝑦𝑠𝑡𝑙
− 𝐷𝑠𝑥̂𝑠) 

𝑧̂𝑠 = 𝑀𝑠𝑥̂𝑠   (7) 

where 𝐾𝑠 is the TVSE gain and 𝑥̂𝑠 is the estimation of neural state 𝑥𝑠. 

Let the estimation error (EE) be 𝑒𝑠 = 𝑥𝑠 − 𝑥̂𝑠 and the controlled output EE be 𝑧̃𝑠 = 𝑧𝑠 − 𝑧̂𝑠. Furthermore, the 

controlled output EE system can be obtained from (1), (4) and (7) as follows: 

𝑒𝑠+1 = (𝐴̄ − 𝐾𝑠𝐷𝑠)𝑒𝑠 + Δ𝐴𝑠(𝑒𝑠 + 𝑥̂𝑠) + 𝐴̄𝜏𝑒𝑠−𝜏 + Δ𝐴𝑑𝜏(𝑒𝑠−𝜏 + 𝑥̂𝑠−𝜏) + 𝐵̄𝑓̄(𝑒𝑠) + Δ𝐵𝑠𝑓(𝑒𝑠 + 𝑥̂𝑠) + 𝐶𝑠𝑣1𝑠 − 𝐾𝑠𝐸𝑠𝑣2𝑠 + 𝐾𝑠𝜀𝑠  

𝑧̃𝑠 = 𝑀𝑠𝑒𝑠   (8) 

where 𝑓̄(𝑒𝑠) = 𝑓(𝑥𝑠) − 𝑓(𝑥̂𝑠) and 𝑒𝑠−𝜏 = 𝑥𝑠−𝜏 − 𝑥̂𝑠−𝜏. 
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Subsequently, the EE covariance matrix 𝑋𝑠 is specified as follows: 

 𝑋𝑠 = 𝔼{𝑒𝑠𝑒𝑠
𝑇}  (9) 

The main objective is to construct the TVSE of form (7) for MNNs with variance constraint, and the H∞ SE algorithm 

obeys the following requirements simultaneously. 

(R1) Let the matrices 𝒰𝜑 > 0, 𝒰𝜙 > 0, 𝒰𝜓 > 0 and the scalar 𝛾 > 0 be given. The controlled output EE 𝑧̃𝑠 with the 

initial state 𝑒𝑙(𝑙 = −𝜏,−𝜏 + 1,… ,0) satisfies 

 𝐽1 ≔ 𝔼{ ∑ (‖𝑧̃𝑠‖
2 − 𝛾2‖𝑣𝑠‖𝒰𝜑

2 )𝑁−1
𝑠=0 } − 𝛾2𝔼{𝑒0

𝑇𝒰𝜙𝑒0 +∑ 𝑒𝑙
𝑇−1

𝑙=−𝜏 𝒰𝜓𝑒𝑙} < 0  (10) 

where ‖𝑣𝑠‖𝒰𝜑
2 = 𝑣𝑠

𝑇𝒰𝜑𝑣𝑠 and 𝑣𝑠 = [𝑣1𝑠
𝑇 𝑣2𝑠

𝑇 ]𝑇. 

(R2) The EE covariance obeys the condition 

 𝐽2 ≔ 𝑋𝑠 ≤ 𝔜𝑠  (11) 

where 𝔜𝑠 > 0(0 ≤ 𝑠 ≤ 𝑁) depicts pre-determined known matrix, which reflects the admissible estimation precision 

demand corresponding to the actual situation. 

Remark 1: On the one hand, the non-augmented method designs the state estimator directly based on the 

original system model, eliminating the need to construct additional augmented states. It avoids the increase in 

model complexity caused by augmentation. On the other hand, it should be noted that augmented methods need 

to process both original states and augmented states simultaneously with computational load increasing linearly 

with the augmented dimension. In contrast, the non-augmented method directly corresponds to the original design 

objectives and is capable of reducing computational complexity. 

Before ending this section, we introduce four lemmas for subsequent calculations. 

Lemma 1 [40]: The nonlinear activation function 𝑓(⋅) obeys condition (2), we can deduce 

 [

𝑒𝑠
𝑓(𝑒𝑠 + 𝑥̂𝑠)

1
]

𝑇

[

𝑅1𝑠 𝑅2𝑠 𝑅3𝑠
𝑇

∗ 𝐼 −𝑓(𝑥̂𝑠)

∗ ∗ 𝑓𝑇(𝑥̂𝑠)𝑓(𝑥̂𝑠)

] [

𝑒𝑠
𝑓(𝑒𝑠 + 𝑥̂𝑠)

1
] ≤ 0  (12) 

where 

𝑅1𝑠−=
𝐔1
𝑇𝐔2 + 𝐔2

𝑇𝐔1
2

, 𝑅2𝑠 = −
𝐔1
𝑇 + 𝐔2
2

, 𝑅3𝑠 =
𝑓𝑇(𝑥̂𝑠)𝐔1 + 𝑓

𝑇(𝑥̂𝑠)𝐔2
2

 

Proof: Based on [40], the proof of this lemma can be easily obtained and is thus omitted here. 

Lemma 2: The nonlinear activation function 𝑓(⋅) satisfies condition (2), we obtain 

 𝑓𝑇(𝜒)𝑓(𝜒) ≤ {
𝜌+

1

𝜌

2(1−𝜌)
tr(𝐔1

𝑇𝐔1) +
1

𝜌(1−𝜌)
tr(𝐔2

𝑇𝐔2)} ‖𝜒‖
2, 𝜌 ∈ (0,1)  (13) 

where 𝑼1 and 𝑼2 denote matrices with known appropriate dimensions. 

Proof: The derivation of this lemma is straightforward and thus omitted. 

Lemma 3 [41]: For the DETM given by (5) and (6) with the initial value 𝜂0 ≥ 0, the internal dynamic variable obeys 

𝜂𝑠 ≥ 0 for all 𝑠 ≥ 0 if the parameters 𝜆 (0 < 𝜆 < 1) and 𝜃 (𝜃 > 0) obey 𝜆𝜃 ≥ 1. 
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Proof: Based on the condition (5), it holds that 
1

𝜃
𝜂𝑠 + 𝜎 − 𝜀𝑠

𝑇𝜀𝑠 ≥ 0 for all 𝑠 ≥ 0. Then, it follows from (6) that 𝜂𝑠+1 ≥

(𝜆 −
𝜂𝑠

𝜃
) ≥ ⋯ ≥ (𝜆 −

1

𝜃
)
𝑠+1

, which is easily seen 𝜂𝑠 > 0 for all 𝑠 ≥ 0 under the condition 𝜆𝜃 ≥ 1 and 𝜂0 ≥ 0. This 

completes the proof of Lemma 3. 

Lemma 4 [28]: Assume that 𝜆𝜃 ≥ 1 holds and let scalars 𝑎𝑠 > 0 and 𝑏𝑠 > 0 be given. If there exists matrix 𝑌𝑠 

obeying 

𝑌𝑠 ≜ Ω𝑠(𝑌̄𝑠) 

≜ (1 + 𝑎𝑠)(1 + 𝑏𝑠)𝜆
2𝑌̄𝑠 + [

(1 + 𝑎𝑠
−1)(1 + 𝜃)2

𝜃4
+
(1 + 𝜃)(1 + 𝜃2)

𝜃3
] 𝑌̄𝑠

2 

+[(1 + 𝑎𝑠)(1 + 𝑏𝑠
−1) + (1 + 𝑎𝑠

−1) (1 +
1

𝜃
)
2

] 𝜎2 +
(1+𝜃)(1+𝜃2)

𝜃3
𝜎4  (14) 

with the initial condition 𝑌̄𝑠 = 𝜂0
2, then 𝑌̄𝑠 is an upper bound of 𝑌𝑠 ≜ 𝔼{𝜂𝑠

2}, i.e., 𝑌𝑠 ≤ 𝑌̄𝑠. 

Proof: Using the inequality 𝑀𝑁𝑇 +𝑀𝑁𝑇 ≤ 𝛼𝑀𝑀𝑇 + 𝛼−1𝑁𝑁𝑇(𝛼 > 0), it follows from (5) that 

 𝜀𝑠
𝑇𝜀𝑠 ≤ (

1

𝜃
𝜂𝑠 + 𝜎)

2

≤
1+𝜃

𝜃2
𝜂𝑠
2 + (1 +

1

𝜃
) 𝜎2  (15) 

From (6) and (15), we can derive that 

 𝑌𝑠 = 𝔼{(𝜆𝜂𝑠 + 𝜎 − 𝜀𝑠
𝑇𝜀𝑠)

2} 

 = 𝔼{(𝜆𝜂𝑠 + 𝜎)
2 + (𝜀𝑠

𝑇𝜀𝑠)
2 − 2(𝜆𝜂𝑠 + 𝜎)𝜀𝑠

𝑇𝜀𝑠} 

 = 𝔼{𝜆2𝜂𝑠
2 + 𝜎2 + 2𝜆𝜂𝑠𝜎 + (𝜀𝑠

𝑇𝜀𝑠)
2 − 2(𝜆𝜂𝑠 + 𝜎)𝜀𝑠

𝑇𝜀𝑠} 

≤ (1 + 𝑎𝑠)(1 + 𝑏𝑠)𝜆
2𝔼{𝜂𝑠

2} + (1 + 𝑎𝑠)(1 + 𝑏𝑠
−1)𝜎2 + (1 + 𝑎𝑠

−1)𝔼{(𝜀𝑠
𝑇𝜀𝑠)

2} 

 ≤ (1 + 𝑎𝑠)(1 + 𝑏𝑠)𝜆
2𝔼{𝜂𝑠

2} + (1 + 𝑎𝑠)(1 + 𝑏𝑠
−1)𝜎2 

 +(1 + 𝑎𝑠
−1) [

(1+𝜃)2

𝜃4
𝜂𝑠
4+(1 +

1

𝜃
)
2

𝜎4 +
2(1+𝜃)(𝜃2+1)

𝜃3
𝜂𝑠
2𝜎2] 

 ≤ (1 + 𝑎𝑠)(1 + 𝑏𝑠)𝜆
2𝑌𝑠 + [

(1+𝑎𝑠
−1)(1+𝜃)2

𝜃4
+
(1+𝜃)(1+𝜃2)

𝜃3
] 𝑌𝑠

2 

   + [
(1+𝜃)(1+𝜃2)

𝜃3
+ (1 + 𝑎𝑠)(1 + 𝑏𝑠

−1)] 𝜎2 + (1 + 𝑎𝑠
−1) (1 +

1

𝜃
)
2

𝜎4 

Furthermore, we can easily obtain 𝑌𝑠 ≤ 𝑌̄𝑠, which ends the proof. 

3. Primary Results 

In this section, new sufficient conditions are derived to guarantee two desirable performance indices including 

the prescribed H∞ performance requirement and the EVB. 

3.1. H∞ Performance Analysis 

To begin with, a sufficient condition is obtained to ensure the H∞ performance constraint via the RLMIs method. 

Theorem 1: Consider the MNNs with variance constraint (1). Suppose that matrices 𝒰𝜑 > 0, 𝒰𝜙 > 0 and 𝒰𝜓 > 0, 

the scalar 𝛾 > 0 and the TVSE gain matrix 𝐾𝑠 in (7) are given. Under initial conditions 𝜂0 = 0, ℛ0 ≤ 𝛾
2𝒰𝜙 and 𝔔𝑙 ≤

𝛾2𝒰𝜓(𝑙 = −𝜏,−𝜏 + 1,… ,−1), if there exist PDRVMs {ℛ𝑠}1≤𝑠≤𝑁+1, {𝔔𝑠}0≤𝑠≤𝑁 and the positive scalar 𝜅𝑠 obeying the 

inequality 
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 Θ =

[
 
 
 
 
 
 
 
 
Θ11 Θ12 −𝑅3𝑠

𝑇 0 0 0 0 0

∗ Θ22 𝑓(𝑥̂𝑠) 0 0 0 0 0
∗ ∗ Θ33 0 0 0 0 0
∗ ∗ ∗ Θ44 0 0 0 0
∗ ∗ ∗ ∗ Θ55 0 0 0
∗ ∗ ∗ ∗ ∗ Θ66 0 0
∗ ∗ ∗ ∗ ∗ ∗ Θ77 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ Θ88]

 
 
 
 
 
 
 
 

< 0  (16) 

with 

Θ11 = 10𝐴̄
𝑇ℛ𝑠+1𝐴̄ + 11𝐷𝑠

𝑇𝐾𝑠
𝑇ℛ𝑠+1𝐾𝑠𝐷𝑠 + 11Δ𝐴𝑠

𝑇ℛ𝑠+1Δ𝐴𝑠 +𝔔𝑠 +𝑀𝑠
𝑇𝑀𝑠 − ℛ𝑠 − 𝑅1𝑠 

Θ12 = 𝐴̄
𝑇ℛ𝑠+1𝐵̄ − 𝑅2𝑠, Θ22 = 11Δ𝐵𝑠

𝑇ℛ𝑠+1Δ𝐵𝑠 + 10𝐵̄
𝑇ℛ𝑠+1𝐵̄ − 𝐼 

Θ33 = 11𝑥̂𝑠
𝑇Δ𝐴𝑠

𝑇ℛ𝑠+1Δ𝐴𝑠𝑥̂𝑠 + 11𝑥̂𝑠−𝜏
𝑇 Δ𝐴𝑑𝜏

𝑇 ℛ𝑠+1Δ𝐴𝑑𝜏𝑥̂𝑠−𝜏 + 11𝑓
𝑇(𝑥̂𝑠)𝐵̄

𝑇ℛ𝑠+1𝐵̄𝑓(𝑥̂𝑠) +
𝜎

𝜃
  −𝜅𝑠𝜎 − 𝑓

𝑇(𝑥̂𝑠)𝑓(𝑥̂𝑠) 

Θ44 = 11𝐴̄𝜏
𝑇ℛ𝑠+1𝐴̄𝜏 + 11Δ𝐴𝑑𝜏

𝑇 ℛ𝑠+1Δ𝐴𝑑𝜏 −𝔔𝑠−𝜏 

Θ55 = 12𝐾𝑠
𝑇ℛ𝑠+1𝐾𝑠 − (

1

𝜃
+ 𝜅𝑠) 𝐼, Θ66 =

𝜆 − 1 + 𝜅𝑠
𝜃

𝐼 

Θ77 = 𝐶𝑠
𝑇ℛ𝑠+1𝐶𝑠 − 𝛾

2𝒰𝜑 , Θ88 = 2𝐸𝑠
𝑇𝐾𝑠

𝑇ℛ𝑠+1𝐾𝑠𝐸𝑠 − 𝛾
2𝒰𝜑  (17) 

then the H∞ performance constraint in (10) is ensured. 

Proof: Define 

 ℳ(𝑒𝑠) = 𝑒𝑠
𝑇ℛ𝑠𝑒𝑠 + ∑ 𝑒𝑙

𝑇𝑠−1
𝑙=𝑠−𝜏 𝔔𝑙𝑒𝑙 +

𝜂𝑠

𝜃
  (18) 

To proceed, according to the EE system (8), it can be concluded that 

𝔼{Δℳ(𝑒𝑠)} = 𝔼{𝑒𝑠
𝑇𝐴̄𝑇ℛ𝑠+1𝐴̄𝑒𝑠 + 𝑒𝑠

𝑇𝐷𝑠
𝑇𝐾𝑠

𝑇ℛ𝑠+1𝐾𝑠𝐷𝑠𝑒𝑠 + 𝑒𝑠
𝑇Δ𝐴𝑠

𝑇ℛ𝑠+1Δ𝐴𝑠𝑒𝑠 + 𝑥̂𝑠
𝑇Δ𝐴𝑠

𝑇ℛ𝑠+1Δ𝐴𝑠𝑥̂𝑠 + 𝑒𝑠−𝜏
𝑇 𝐴̄𝜏

𝑇ℛ𝑠+1𝐴̄𝜏𝑒𝑠−𝜏 

+𝑓𝑇(𝑒𝑠 + 𝑥̂𝑠)𝐵̄
𝑇ℛ𝑠+1𝐵̄𝑓(𝑒𝑠 + 𝑥̂𝑠) + 𝑒𝑠−𝜏

𝑇 Δ𝐴𝑑𝜏
𝑇 ℛ𝑠+1Δ𝐴𝑑𝜏𝑒𝑠−𝜏 + 𝑥̂𝑠−𝜏

𝑇 Δ𝐴𝑑𝜏
𝑇 ℛ𝑠+1Δ𝐴𝑑𝜏𝑥̂𝑠−𝜏 + 𝑓

𝑇(𝑒𝑠 + 𝑥̂𝑠)Δ𝐵𝑠
𝑇  

× ℛ𝑠+1Δ𝐵𝑠𝑓(𝑒𝑠 + 𝑥̂𝑠) + 𝑣1𝑠
𝑇 𝐶𝑠

𝑇ℛ𝑠+1𝐶𝑠𝑣1𝑠 + 𝑣2𝑠
𝑇 𝐸𝑠

𝑇𝐾𝑠
𝑇ℛ𝑠+1𝐾𝑠𝐸𝑠𝑣2𝑠 + 𝑓

𝑇(𝑥̂𝑠)𝐵̄
𝑇ℛ𝑠+1𝐵̄𝑓(𝑥̂𝑠) + 𝜀𝑠

𝑇𝐾𝑠
𝑇ℛ𝑠+1𝐾𝑠𝜀𝑠 

−2𝑒𝑠
𝑇𝐴̄𝑇ℛ𝑠+1𝐾𝑠𝐷𝑠𝑒𝑠 + 2𝑒𝑠

𝑇𝐴̄𝑇ℛ𝑠+1Δ𝐴𝑠𝑒𝑠 + 2𝑒𝑠
𝑇𝐴̄𝑇ℛ𝑠+1Δ𝐴𝑠𝑥̂𝑠 + 2𝑒𝑠

𝑇𝐴̄𝑇ℛ𝑠+1𝐴̄𝜏𝑒𝑠−𝜏 + 2𝑒𝑠
𝑇𝐴̄𝑇ℛ𝑠+1𝐵̄𝑓(𝑒𝑠 + 𝑥̂𝑠) 

+2𝑒𝑠
𝑇𝐴̄𝑇ℛ𝑠+1Δ𝐴𝑑𝜏𝑒𝑠−𝜏 + 2𝑒𝑠

𝑇𝐴̄𝑇ℛ𝑠+1Δ𝐴𝑑𝜏𝑥̂𝑠−𝜏 + 2𝑒𝑠
𝑇𝐴̄𝑇ℛ𝑠+1Δ𝐵𝑠𝑓(𝑒𝑠 + 𝑥̂𝑠) + 2𝑒𝑠

𝑇𝐴̄𝑇ℛ𝑠+1𝐾𝑠𝜀𝑠 − 2𝑒𝑠
𝑇𝐴̄𝑇ℛ𝑠+1 

× 𝐵̄𝑓(𝑥̂𝑠) − 2𝑒𝑠
𝑇𝐷𝑠

𝑇𝐾𝑠
𝑇ℛ𝑠+1Δ𝐴𝑠𝑒𝑠 − 2𝑒𝑠

𝑇𝐷𝑠
𝑇𝐾𝑠

𝑇ℛ𝑠+1Δ𝐴𝑠𝑥̂𝑠 − 2𝑒𝑠
𝑇𝐷𝑠

𝑇𝐾𝑠
𝑇ℛ𝑠+1𝐴̄𝜏𝑒𝑠−𝜏 − 2𝑒𝑠

𝑇𝐷𝑠
𝑇𝐾𝑠

𝑇ℛ𝑠+1𝐵̄𝑓(𝑒𝑠 + 𝑥̂𝑠) 

−2𝑒𝑠
𝑇𝐷𝑠

𝑇𝐾𝑠
𝑇ℛ𝑠+1Δ𝐴𝑑𝜏𝑒𝑠−𝜏 − 2𝑒𝑠

𝑇𝐷𝑠
𝑇𝐾𝑠

𝑇ℛ𝑠+1Δ𝐴𝑠𝑥̂𝑠−𝜏 − 2𝑒𝑠
𝑇𝐷𝑠

𝑇𝐾𝑠
𝑇ℛ𝑠+1Δ𝐵𝑠𝑓(𝑒𝑠 + 𝑥̂𝑠) − 2𝑒𝑠

𝑇𝐷𝑠
𝑇𝐾𝑠

𝑇ℛ𝑠+1𝐾𝑠𝜀𝑠 

+2𝑒𝑠
𝑇𝐷𝑠

𝑇𝐾𝑠
𝑇ℛ𝑠+1𝐵̄𝑓(𝑥̂𝑠) + 2𝑒𝑠

𝑇Δ𝐴𝑠
𝑇ℛ𝑠+1Δ𝐴𝑠𝑥̂𝑠 + 2𝑒𝑠

𝑇Δ𝐴𝑠
𝑇ℛ𝑠+1𝐴̄𝜏𝑒𝑠−𝜏 + 2𝑒𝑠

𝑇Δ𝐴𝑠
𝑇ℛ𝑠+1𝐵̄𝑓(𝑒𝑠 + 𝑥̂𝑠) + 2𝑒𝑠

𝑇Δ𝐴𝑠
𝑇ℛ𝑠+1 

× Δ𝐴𝑑𝜏𝑒𝑠−𝜏 + 2𝑒𝑠
𝑇Δ𝐴𝑠

𝑇ℛ𝑠+1Δ𝐴𝑠𝑥̂𝑠−𝜏 + 2𝑒𝑠
𝑇Δ𝐴𝑠

𝑇ℛ𝑠+1Δ𝐵𝑠𝑓(𝑒𝑠 + 𝑥̂𝑠) + 2𝑒𝑠
𝑇Δ𝐴𝑠

𝑇ℛ𝑠+1𝐾𝑠𝜀𝑠 − 2𝑒𝑠
𝑇Δ𝐴𝑠

𝑇ℛ𝑠+1𝐵̄𝑓(𝑥̂𝑠) 

+2𝑥̂𝑠
𝑇Δ𝐴𝑠

𝑇ℛ𝑠+1𝐴̄𝜏𝑒𝑠−𝜏 + 2𝑥̂𝑠
𝑇Δ𝐴𝑠

𝑇ℛ𝑠+1𝐵̄𝑓(𝑒𝑠 + 𝑥̂𝑠) + 2𝑥̂𝑠
𝑇Δ𝐴𝑠

𝑇ℛ𝑠+1Δ𝐴𝑑𝜏𝑒𝑠−𝜏 + 2𝑥̂𝑠
𝑇Δ𝐴𝑠

𝑇ℛ𝑠+1Δ𝐴𝑠𝑥̂𝑠−𝜏 + 2𝑥̂𝑠
𝑇Δ𝐴𝑠

𝑇 

× ℛ𝑠+1Δ𝐵𝑠𝑓(𝑒𝑠 + 𝑥̂𝑠) + 2𝑥̂𝑠
𝑇Δ𝐴𝑠

𝑇ℛ𝑠+1𝐾𝑠𝜀𝑠 − 2𝑥̂𝑠
𝑇Δ𝐴𝑠

𝑇ℛ𝑠+1𝐵̄𝑓(𝑥̂𝑠) + 2𝑒𝑠−𝜏
𝑇 𝐴̄𝜏

𝑇ℛ𝑠+1𝐵̄𝑓(𝑒𝑠 + 𝑥̂𝑠) + 2𝑒𝑠−𝜏
𝑇 𝐴̄𝜏

𝑇ℛ𝑠+1 

× Δ𝐴𝑑𝜏𝑒𝑠−𝜏 + 2𝑒𝑠−𝜏
𝑇 𝐴̄𝜏

𝑇ℛ𝑠+1Δ𝐴𝑠𝑥̂𝑠−𝜏 + 2𝑒𝑠−𝜏
𝑇 𝐴̄𝜏

𝑇ℛ𝑠+1Δ𝐵𝑠𝑓(𝑒𝑠 + 𝑥̂𝑠) + 2𝑒𝑠−𝜏
𝑇 𝐴̄𝜏

𝑇ℛ𝑠+1𝐾𝑠𝜀𝑠 − 2𝑒𝑠−𝜏
𝑇 𝐴̄𝜏

𝑇ℛ𝑠+1𝐵̄𝑓(𝑥̂𝑠) 

+2𝑓𝑇(𝑒𝑠 + 𝑥̂𝑠)𝐵̄
𝑇ℛ𝑠+1Δ𝐴𝑑𝜏𝑒𝑠−𝜏 + 2𝑓

𝑇(𝑒𝑠 + 𝑥̂𝑠)𝐵̄
𝑇ℛ𝑠+1Δ𝐴𝑠𝑥̂𝑠−𝜏 + 2𝑓

𝑇(𝑒𝑠 + 𝑥̂𝑠)𝐵̄
𝑇ℛ𝑠+1Δ𝐵𝑠𝑓(𝑒𝑠 + 𝑥̂𝑠) 

+2𝑓𝑇(𝑒𝑠 + 𝑥̂𝑠)𝐵̄
𝑇ℛ𝑠+1𝐾𝑠𝜀𝑠 − 2𝑓

𝑇(𝑒𝑠 + 𝑥̂𝑠)𝐵̄
𝑇ℛ𝑠+1𝐵̄𝑓(𝑥̂𝑠) + 2𝑒𝑠−𝜏

𝑇 Δ𝐴𝑑𝜏
𝑇 ℛ𝑠+1Δ𝐴𝑠𝑥̂𝑠−𝜏 + 2𝑒𝑠−𝜏

𝑇 Δ𝐴𝑑𝜏
𝑇 ℛ𝑠+1Δ𝐵𝑠 

× 𝑓(𝑒𝑠 + 𝑥̂𝑠) + 2𝑒𝑠−𝜏
𝑇 Δ𝐴𝑑𝜏

𝑇 ℛ𝑠+1𝐾𝑠𝜀𝑠 − 2𝑒𝑠−𝜏
𝑇 Δ𝐴𝑑𝜏

𝑇 ℛ𝑠+1𝐵̄𝑓(𝑥̂𝑠) + 2𝑥̂𝑠−𝜏
𝑇 Δ𝐴𝑑𝜏

𝑇 ℛ𝑠+1Δ𝐵𝑠𝑓(𝑒𝑠 + 𝑥̂𝑠) + 2𝑥̂𝑠−𝜏
𝑇 Δ𝐴𝑑𝜏

𝑇 ℛ𝑠+1 

× 𝐾𝑠𝜀𝑠 − 2𝑥̂𝑠−𝜏
𝑇 Δ𝐴𝑑𝜏

𝑇 ℛ𝑠+1𝐵̄𝑓(𝑥̂𝑠) + 2𝑓
𝑇(𝑒𝑠 + 𝑥̂𝑠)Δ𝐵𝑠

𝑇ℛ𝑠+1𝐾𝑠𝜀𝑠 − 2𝑓
𝑇(𝑒𝑠 + 𝑥̂𝑠)Δ𝐵𝑠

𝑇ℛ𝑠+1𝐵̄𝑓(𝑥̂𝑠) − 2𝜀𝑠
𝑇𝐾𝑠

𝑇ℛ𝑠+1 

 × 𝐵̄𝑓(𝑥̂𝑠) − 2𝑣2𝑠
𝑇 𝐸𝑠

𝑇𝐾𝑠
𝑇ℛ𝑠+1𝐾𝑠𝜀𝑠+

1

𝜃
(𝜆𝜂𝑠 + 𝜎 − 𝜀𝑠

𝑇𝜀𝑠) −
𝜂𝑠

𝜃
+ 𝑒𝑠

𝑇𝔔𝑠𝑒𝑠 − 𝑒𝑠−𝜏
𝑇 𝔔𝑠−𝜏𝑒𝑠−𝜏 − 𝑒𝑠

𝑇ℛ𝑠𝑒𝑠}  (19) 
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Applying the fundamental inequality 2𝑎𝑇𝐻𝑏 ≤ 𝑎𝑇𝐻𝑎 + 𝑏𝑇𝐻𝑏(𝐻 > 0), we can derive the following results 

𝔼{−2𝑒𝑠
𝑇𝐴̄𝑇ℛ𝑠+1𝐾𝑠𝐷𝑠𝑒𝑠} ≤ 𝔼{𝑒𝑠

𝑇𝐴̄𝑇ℛ𝑠+1𝐴̄𝑒𝑠 + 𝑒𝑠
𝑇𝐷𝑠

𝑇𝐾𝑠
𝑇𝔔𝑘+1𝐾𝑠𝐷𝑠𝑒𝑠}                    

𝔼{2𝑒𝑠
𝑇𝐴̄𝑇ℛ𝑠+1Δ𝐴𝑠𝑒𝑠} ≤ 𝔼{𝑒𝑠

𝑇𝐴̄𝑇ℛ𝑠+1𝐴̄𝑒𝑠 + 𝑒𝑠
𝑇Δ𝐴𝑠

𝑇ℛ𝑠+1Δ𝐴𝑠𝑒𝑠}                    

𝔼{2𝑒𝑠
𝑇𝐴̄𝑇ℛ𝑠+1Δ𝐴𝑠𝑥̂𝑠} ≤ 𝔼{𝑒𝑠

𝑇𝐴̄𝑇ℛ𝑠+1𝐴̄𝑒𝑠 + 𝑥̂𝑠
𝑇Δ𝐴𝑠

𝑇ℛ𝑠+1Δ𝐴𝑠𝑥̂𝑠}                    

𝔼{2𝑒𝑠
𝑇𝐴̄𝑇ℛ𝑠+1𝐴̄𝜏𝑒𝑠−𝜏} ≤ 𝔼{𝑒𝑠

𝑇𝐴̄𝑇ℛ𝑠+1𝐴̄𝑒𝑠 + 𝑒𝑠−𝜏
𝑇 𝐴̄𝜏

𝑇ℛ𝑠+1𝐴̄𝜏𝑒𝑠−𝜏}                   

𝔼{2𝑒𝑠
𝑇𝐴̄𝑇ℛ𝑠+1Δ𝐴𝑑𝜏𝑒𝑠−𝜏} ≤ 𝔼{𝑒𝑠

𝑇𝐴̄𝑇ℛ𝑠+1𝐴̄𝑒𝑠 + 𝑒𝑠−𝜏
𝑇 Δ𝐴𝑑𝜏

𝑇 ℛ𝑠+1Δ𝐴𝑑𝜏𝑒𝑠−𝜏}              

𝔼{2𝑒𝑠
𝑇𝐴̄𝑇ℛ𝑠+1Δ𝐴𝑑𝜏𝑥̂𝑠−𝜏} ≤ 𝔼{𝑒𝑠

𝑇𝐴̄𝑇ℛ𝑠+1𝐴̄𝑒𝑠 + 𝑥̂𝑠−𝜏
𝑇 Δ𝐴𝑑𝜏

𝑇 ℛ𝑠+1Δ𝐴𝑑𝜏𝑥̂𝑠−𝜏}             

𝔼{2𝑒𝑠
𝑇𝐴̄𝑇ℛ𝑠+1Δ𝐵𝑠𝑓(𝑒𝑠 + 𝑥̂𝑠)} ≤ 𝔼{𝑒𝑠

𝑇𝐴̄𝑇ℛ𝑠+1𝐴̄𝑒𝑠 + 𝑓
𝑇(𝑒𝑠 + 𝑥̂𝑠)Δ𝐵𝑠

𝑇ℛ𝑠+1Δ𝐵𝑠𝑓(𝑒𝑠 + 𝑥̂𝑠)} 

𝔼{2𝑒𝑠
𝑇𝐴̄𝑇ℛ𝑠+1𝐾𝑠𝜀𝑠} ≤ 𝔼{𝑒𝑠

𝑇𝐴̄𝑇ℛ𝑠+1𝐴̄𝑒𝑠 + 𝜀𝑠
𝑇𝐾𝑠

𝑇ℛ𝑠+1𝐾𝑠𝜀𝑠}                    

𝔼{−2𝑒𝑠
𝑇𝐴̄𝑇ℛ𝑠+1𝐵̄𝑓(𝑥̂𝑠)} ≤ 𝔼{𝑒𝑠

𝑇𝐴̄𝑇ℛ𝑠+1𝐴̄𝑒𝑠 + 𝑓
𝑇(𝑥̂𝑠)𝐵̄

𝑇ℛ𝑠+1𝐵̄𝑠𝑓(𝑥̂𝑠)}              

𝔼{−2𝑒𝑠
𝑇𝐷𝑠

𝑇𝐾𝑠
𝑇ℛ𝑠+1Δ𝐴𝑠𝑒𝑠} ≤ 𝔼{𝑒𝑠

𝑇𝐷𝑠
𝑇𝐾𝑠

𝑇ℛ𝑠+1𝐾𝑠𝐷𝑠𝑒𝑠 + 𝑒𝑠
𝑇Δ𝐴𝑠

𝑇ℛ𝑠+1Δ𝐴𝑠𝑒𝑠}                

𝔼{−2𝑒𝑠
𝑇𝐷𝑠

𝑇𝐾𝑠
𝑇ℛ𝑠+1Δ𝐴𝑠𝑥̂𝑠} ≤ 𝔼{𝑒𝑠

𝑇𝐷𝑠
𝑇𝐾𝑠

𝑇ℛ𝑠+1𝐾𝑠𝐷𝑠𝑒𝑠 + 𝑥̂𝑠
𝑇Δ𝐴𝑠

𝑇ℛ𝑠+1Δ𝐴𝑠𝑥̂𝑠}                

𝔼{−2𝑒𝑠
𝑇𝐷𝑠

𝑇𝐾𝑠
𝑇ℛ𝑠+1𝐴̄𝜏𝑒𝑠−𝜏} ≤ 𝔼{𝑒𝑠

𝑇𝐷𝑠
𝑇𝐾𝑠

𝑇ℛ𝑠+1𝐾𝑠𝐷𝑠𝑒𝑠 + 𝑒𝑠−𝜏
𝑇 𝐴̄𝜏

𝑇ℛ𝑠+1𝐴̄𝜏𝑒𝑠−𝜏}                

𝔼{−2𝑒𝑠
𝑇𝐷𝑠

𝑇𝐾𝑠
𝑇ℛ𝑠+1𝐵̄𝑓(𝑒𝑠 + 𝑥̂𝑠)} ≤ 𝔼{𝑒𝑠

𝑇𝐷𝑠
𝑇𝐾𝑠

𝑇ℛ𝑠+1𝐾𝑠𝐷𝑠𝑒𝑠 + 𝑓
𝑇(𝑒𝑠 + 𝑥̂𝑠)𝐵̄

𝑇ℛ𝑠+1𝐵̄𝑓(𝑒𝑠 + 𝑥̂𝑠)}  

𝔼{−2𝑒𝑠
𝑇𝐷𝑠

𝑇𝐾𝑠
𝑇ℛ𝑠+1Δ𝐴𝑑𝜏𝑒𝑠−𝜏} ≤ 𝔼{𝑒𝑠

𝑇𝐷𝑠
𝑇𝐾𝑠

𝑇ℛ𝑠+1𝐾𝑠𝐷𝑠𝑒𝑠 + 𝑒𝑠−𝜏
𝑇 Δ𝐴𝑑𝜏

𝑇 ℛ𝑠+1Δ𝐴𝑑𝜏𝑒𝑠−𝜏}             

𝔼{−2𝑒𝑠
𝑇𝐷𝑠

𝑇𝐾𝑠
𝑇ℛ𝑠+1Δ𝐴𝑠𝑥̂𝑠−𝜏} ≤ 𝔼{𝑒𝑠

𝑇𝐷𝑠
𝑇𝐾𝑠

𝑇ℛ𝑠+1𝐾𝑠𝐷𝑠𝑒𝑠 + 𝑥̂𝑠−𝜏
𝑇 Δ𝐴𝑠

𝑇ℛ𝑠+1Δ𝐴𝑠𝑥̂𝑠−𝜏}               

𝔼{−2𝑒𝑠
𝑇𝐷𝑠

𝑇𝐾𝑠
𝑇ℛ𝑠+1Δ𝐵𝑠𝑓(𝑒𝑠 + 𝑥̂𝑠)} ≤ 𝔼{𝑒𝑠

𝑇𝐷𝑠
𝑇𝐾𝑠

𝑇ℛ𝑠+1𝐾𝑠𝐷𝑠𝑒𝑠 + 𝑓
𝑇(𝑒𝑠 + 𝑥̂𝑠)Δ𝐵𝑠

𝑇ℛ𝑠+1Δ𝐵𝑠𝑓(𝑒𝑠 + 𝑥̂𝑠)} 

𝔼{−2𝑒𝑠
𝑇𝐷𝑠

𝑇𝐾𝑠
𝑇ℛ𝑠+1𝐾𝑠𝜀𝑠} ≤ 𝔼{𝑒𝑠

𝑇𝐷𝑠
𝑇𝐾𝑠

𝑇ℛ𝑠+1𝐾𝑠𝐷𝑠𝑒𝑠 + 𝜀𝑠
𝑇𝐾𝑠

𝑇ℛ𝑠+1𝐾𝑠𝜀𝑠}                     

𝔼{2𝑒𝑠
𝑇𝐷𝑠

𝑇𝐾𝑠
𝑇ℛ𝑠+1𝐵̄𝑓(𝑥̂𝑠)} ≤ 𝔼{𝑒𝑠

𝑇𝐷𝑠
𝑇𝐾𝑠

𝑇ℛ𝑠+1𝐾𝑠𝐷𝑠𝑒𝑠 + 𝑓
𝑇(𝑥̂𝑠)𝐵̄

𝑇ℛ𝑠+1𝐵̄𝑓(𝑥̂𝑠)}        

𝔼{2𝑒𝑠
𝑇Δ𝐴𝑠

𝑇ℛ𝑠+1Δ𝐴𝑠𝑥̂𝑠} ≤ 𝔼{𝑒𝑠
𝑇Δ𝐴𝑠

𝑇ℛ𝑠+1Δ𝐴𝑠𝑒𝑠 + 𝑥̂𝑠
𝑇Δ𝐴𝑠

𝑇ℛ𝑠+1Δ𝐴𝑠𝑥̂𝑠}               

𝔼{2𝑒𝑠
𝑇Δ𝐴𝑠

𝑇ℛ𝑠+1𝐴̄𝜏𝑒𝑠−𝜏} ≤ 𝔼{𝑒𝑠
𝑇Δ𝐴𝑠

𝑇ℛ𝑠+1Δ𝐴𝑠𝑒𝑠 + 𝑒𝑠−𝜏
𝑇 𝐴̄𝜏

𝑇ℛ𝑠+1𝐴̄𝜏𝑒𝑠−𝜏}               

𝔼{2𝑒𝑠
𝑇Δ𝐴𝑠

𝑇ℛ𝑠+1𝐵̄𝑓(𝑒𝑠 + 𝑥̂𝑠)} ≤ 𝔼{𝑒𝑠
𝑇Δ𝐴𝑠

𝑇ℛ𝑠+1Δ𝐴𝑠𝑒𝑠 + 𝑓
𝑇(𝑒𝑠 + 𝑥̂𝑠)𝐵̄

𝑇ℛ𝑠+1𝐵̄𝑓(𝑒𝑠 + 𝑥̂𝑠)} 

𝔼{2𝑒𝑠
𝑇Δ𝐴𝑠

𝑇ℛ𝑠+1Δ𝐴𝑑𝜏𝑒𝑠−𝜏} ≤ 𝔼{𝑒𝑠
𝑇Δ𝐴𝑠

𝑇ℛ𝑠+1Δ𝐴𝑠𝑒𝑠 + 𝑒𝑠−𝜏
𝑇 Δ𝐴𝑑𝜏

𝑇 ℛ𝑠+1Δ𝐴𝑑𝜏𝑒𝑠−𝜏}           

𝔼{2𝑒𝑠
𝑇Δ𝐴𝑠

𝑇ℛ𝑠+1Δ𝐴𝑠𝑥̂𝑠−𝜏} ≤ 𝔼{𝑒𝑠
𝑇Δ𝐴𝑠

𝑇ℛ𝑠+1Δ𝐴𝑠𝑒𝑠 + 𝑥̂𝑠−𝜏
𝑇 Δ𝐴𝑠

𝑇ℛ𝑠+1Δ𝐴𝑠𝑥̂𝑠−𝜏}             

   𝔼{2𝑒𝑠
𝑇Δ𝐴𝑠

𝑇ℛ𝑠+1Δ𝐵𝑠𝑓(𝑒𝑠 + 𝑥̂𝑠)} ≤ 𝔼{𝑒𝑠
𝑇Δ𝐴𝑠

𝑇ℛ𝑠+1Δ𝐴𝑠𝑒𝑠 + 𝑓
𝑇(𝑒𝑠 + 𝑥̂𝑠)Δ𝐵𝑠

𝑇ℛ𝑠+1Δ𝐵𝑠𝑓(𝑒𝑠 + 𝑥̂𝑠)} 

𝔼{2𝑒𝑠
𝑇Δ𝐴𝑠

𝑇ℛ𝑠+1𝐾𝑠𝜀𝑠} ≤ 𝔼{𝑒𝑠
𝑇Δ𝐴𝑠

𝑇ℛ𝑠+1Δ𝐴𝑠𝑒𝑠 + 𝜀𝑠
𝑇𝐾𝑠

𝑇ℛ𝑠+1𝐾𝑠𝜀𝑠}                  

  𝔼{−2𝑒𝑠
𝑇Δ𝐴𝑠

𝑇ℛ𝑠+1𝐵̄𝑓(𝑥̂𝑠)} ≤ 𝔼{𝑒𝑠
𝑇Δ𝐴𝑠

𝑇ℛ𝑠+1Δ𝐴𝑠𝑒𝑠 + 𝑓
𝑇(𝑥̂𝑠)𝐵̄

𝑇ℛ𝑠+1𝐵̄𝑓(𝑥̂𝑠)}                

𝔼{2𝑥̂𝑠
𝑇Δ𝐴𝑠

𝑇ℛ𝑠+1𝐴̄𝜏𝑒𝑠−𝜏} ≤ 𝔼{𝑥̂𝑠
𝑇Δ𝐴𝑠

𝑇ℛ𝑠+1Δ𝐴𝑠𝑥̂𝑠 + 𝑒𝑠−𝜏
𝑇 𝐴̄𝜏

𝑇ℛ𝑠+1𝐴̄𝜏𝑒𝑠−𝜏}                

𝔼{2𝑥̂𝑠
𝑇Δ𝐴𝑠

𝑇ℛ𝑠+1𝐵̄𝑓(𝑒𝑠 + 𝑥̂𝑠)} ≤ 𝔼{𝑥̂𝑠
𝑇Δ𝐴𝑠

𝑇ℛ𝑠+1Δ𝐴𝑠𝑥̂𝑠 + 𝑓
𝑇(𝑒𝑠 + 𝑥̂𝑠)𝐵̄

𝑇ℛ𝑠+1𝐵̄𝑓(𝑒𝑠 + 𝑥̂𝑠)} 

𝔼{2𝑥̂𝑠
𝑇Δ𝐴𝑠

𝑇ℛ𝑠+1Δ𝐴𝑑𝜏𝑒𝑠−𝜏} ≤ 𝔼{𝑥̂𝑠
𝑇Δ𝐴𝑠

𝑇ℛ𝑠+1Δ𝐴𝑠𝑥̂𝑠 + 𝑒𝑠−𝜏
𝑇 Δ𝐴𝑑𝜏

𝑇 ℛ𝑠+1Δ𝐴𝑑𝜏𝑒𝑠−𝜏}           

𝔼{2𝑥̂𝑠
𝑇Δ𝐴𝑠

𝑇ℛ𝑠+1Δ𝐴𝑠𝑥̂𝑠−𝜏} ≤ 𝔼{𝑥̂𝑠
𝑇Δ𝐴𝑠

𝑇ℛ𝑠+1Δ𝐴𝑠𝑥̂𝑠 + 𝑥̂𝑠−𝜏
𝑇 Δ𝐴𝑠

𝑇ℛ𝑠+1Δ𝐴𝑠𝑥̂𝑠−𝜏}            

    𝔼{2𝑥̂𝑠
𝑇Δ𝐴𝑠

𝑇ℛ𝑠+1Δ𝐵𝑠𝑓(𝑒𝑠 + 𝑥̂𝑠)} ≤ 𝔼{𝑥̂𝑠
𝑇Δ𝐴𝑠

𝑇ℛ𝑠+1Δ𝐴𝑠𝑥̂𝑠 + 𝑓
𝑇(𝑒𝑠 + 𝑥̂𝑠)Δ𝐵𝑠

𝑇ℛ𝑠+1Δ𝐵𝑠𝑓(𝑒𝑠 + 𝑥̂𝑠)} 

𝔼{2𝑥̂𝑠
𝑇Δ𝐴𝑠

𝑇ℛ𝑠+1𝐾𝑠𝜀𝑠} ≤ 𝔼{𝑥̂𝑠
𝑇Δ𝐴𝑠

𝑇ℛ𝑠+1Δ𝐴𝑠𝑥̂𝑠 + 𝜀𝑠
𝑇𝐾𝑠

𝑇ℛ𝑠+1𝐾𝑠𝜀𝑠}                 

𝔼{−2𝑥̂𝑠
𝑇Δ𝐴𝑠

𝑇ℛ𝑠+1𝐵̄𝑓(𝑥̂𝑠)} ≤ 𝔼{𝑥̂𝑠
𝑇Δ𝐴𝑠

𝑇ℛ𝑠+1Δ𝐴𝑠𝑥̂𝑠 + 𝑓
𝑇(𝑥̂𝑠)𝐵̄

𝑇ℛ𝑠+1𝐵̄𝑓(𝑥̂𝑠)}            

   𝔼{2𝑒𝑠−𝜏
𝑇 𝐴̄𝜏

𝑇ℛ𝑠+1𝐵̄𝑓(𝑒𝑠 + 𝑥̂𝑠)} ≤ 𝔼{𝑒𝑠−𝜏
𝑇 𝐴̄𝜏

𝑇ℛ𝑠+1𝐴̄𝜏𝑒𝑠−𝜏 + 𝑓
𝑇(𝑒𝑠 + 𝑥̂𝑠)𝐵̄

𝑇ℛ𝑠+1𝐵̄𝑓(𝑒𝑠 + 𝑥̂𝑠)} 

𝔼{2𝑒𝑠−𝜏
𝑇 𝐴̄𝜏

𝑇ℛ𝑠+1Δ𝐴𝑑𝜏𝑒𝑠−𝜏} ≤ 𝔼{𝑒𝑠−𝜏
𝑇 𝐴̄𝜏

𝑇ℛ𝑠+1𝐴̄𝜏𝑒𝑠−𝜏 + 𝑒𝑠−𝜏
𝑇 Δ𝐴𝑑𝜏

𝑇 ℛ𝑠+1Δ𝐴𝑑𝜏𝑒𝑠−𝜏}        

𝔼{2𝑒𝑠−𝜏
𝑇 𝐴̄𝜏

𝑇ℛ𝑠+1Δ𝐴𝑠𝑥̂𝑠−𝜏} ≤ 𝔼{𝑒𝑠−𝜏
𝑇 𝐴̄𝜏

𝑇ℛ𝑠+1𝐴̄𝜏𝑒𝑠−𝜏 + 𝑥̂𝑠−𝜏
𝑇 Δ𝐴𝑠

𝑇ℛ𝑠+1Δ𝐴𝑠𝑥̂𝑠−𝜏}         

       𝔼{2𝑒𝑠−𝜏
𝑇 𝐴̄𝜏

𝑇ℛ𝑠+1Δ𝐵𝑠𝑓(𝑒𝑠 + 𝑥̂𝑠)} ≤ 𝔼{𝑒𝑠−𝜏
𝑇 𝐴̄𝜏

𝑇ℛ𝑠+1𝐴̄𝜏𝑒𝑠−𝜏 + 𝑓
𝑇(𝑒𝑠 + 𝑥̂𝑠)Δ𝐵𝑠

𝑇ℛ𝑠+1Δ𝐵𝑠𝑓(𝑒𝑠 + 𝑥̂𝑠)} 
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𝔼{2𝑒𝑠−𝜏
𝑇 𝐴̄𝜏

𝑇ℛ𝑠+1𝐾𝑠𝜀𝑠} ≤ 𝔼{𝑒𝑠−𝜏
𝑇 𝐴̄𝜏

𝑇ℛ𝑠+1𝐴̄𝜏𝑒𝑠−𝜏 + 𝜀𝑠
𝑇𝐾𝑠

𝑇ℛ𝑠+1𝐾𝑠𝜀𝑠}                                

𝔼{−2𝑒𝑠−𝜏
𝑇 𝐴̄𝜏

𝑇ℛ𝑠+1𝐵̄𝑓(𝑥̂𝑠)} ≤ 𝔼{𝑒𝑠−𝜏
𝑇 𝐴̄𝜏

𝑇ℛ𝑠+1𝐴̄𝜏𝑒𝑠−𝜏 + 𝑓
𝑇(𝑥̂𝑠)𝐵̄

𝑇ℛ𝑠+1𝐵̄𝑓(𝑥̂𝑠)}                           

𝔼{2𝑓𝑇(𝑒𝑠 + 𝑥̂𝑠)𝐵̄
𝑇ℛ𝑠+1Δ𝐴𝑑𝜏𝑒𝑠−𝜏} ≤ 𝔼{𝑓

𝑇(𝑒𝑠 + 𝑥̂𝑠)𝐵̄
𝑇ℛ𝑠+1𝐵̄𝑓(𝑒𝑠 + 𝑥̂𝑠) + 𝑒𝑠−𝜏

𝑇 Δ𝐴𝑑𝜏
𝑇 ℛ𝑠+1Δ𝐴𝑑𝜏𝑒𝑠−𝜏}              

𝔼{2𝑓𝑇(𝑒𝑠 + 𝑥̂𝑠)𝐵̄
𝑇ℛ𝑠+1Δ𝐴𝑠𝑥̂𝑠−𝜏} ≤ 𝔼{𝑓

𝑇(𝑒𝑠 + 𝑥̂𝑠)𝐵̄
𝑇ℛ𝑠+1𝐵̄𝑓(𝑒𝑠 + 𝑥̂𝑠) + 𝑥̂𝑠−𝜏

𝑇 Δ𝐴𝑠
𝑇ℛ𝑠+1Δ𝐴𝑠𝑥̂𝑠−𝜏}                

𝔼{2𝑓𝑇(𝑒𝑠 + 𝑥̂𝑠)𝐵̄
𝑇ℛ𝑠+1Δ𝐵𝑠𝑓(𝑒𝑠 + 𝑥̂𝑠)} ≤ 𝔼{𝑓

𝑇(𝑒𝑠 + 𝑥̂𝑠)𝐵̄
𝑇ℛ𝑠+1𝐵̄𝑓(𝑒𝑠 + 𝑥̂𝑠) + 𝑓

𝑇(𝑒𝑠 + 𝑥̂𝑠)Δ𝐵𝑠
𝑇ℛ𝑠+1Δ𝐵𝑠𝑓(𝑒𝑠 + 𝑥̂𝑠)} 

𝔼{2𝑓𝑇(𝑒𝑠 + 𝑥̂𝑠)𝐵̄
𝑇ℛ𝑠+1𝐾𝑠𝜀𝑠} ≤ 𝔼{𝑓

𝑇(𝑒𝑠 + 𝑥̂𝑠)𝐵̄
𝑇ℛ𝑠+1𝐵̄𝑓(𝑒𝑠 + 𝑥̂𝑠) + 𝜀𝑠

𝑇𝐾𝑠
𝑇ℛ𝑠+1𝐾𝑠𝜀𝑠}                     

𝔼{−2𝑓𝑇(𝑒𝑠 + 𝑥̂𝑠)𝐵̄
𝑇ℛ𝑠+1𝐵̄𝑓(𝑥̂𝑠)} ≤ 𝔼{𝑓

𝑇(𝑒𝑠 + 𝑥̂𝑠)𝐵̄
𝑇ℛ𝑠+1𝐵̄𝑓(𝑒𝑠 + 𝑥̂𝑠) + 𝑓

𝑇(𝑥̂𝑠)𝐵̄
𝑇ℛ𝑠+1𝐵̄𝑓(𝑥̂𝑠)}                

𝔼{2𝑒𝑠−𝜏
𝑇 Δ𝐴𝑑𝜏

𝑇 ℛ𝑠+1Δ𝐴𝑠𝑥̂𝑠−𝜏} ≤ 𝔼{𝑒𝑠−𝜏
𝑇 Δ𝐴𝑑𝜏

𝑇 ℛ𝑠+1Δ𝐴𝑑𝜏𝑒𝑠−𝜏 + 𝑥̂𝑠−𝜏
𝑇 Δ𝐴𝑠

𝑇ℛ𝑠+1Δ𝐴𝑠𝑥̂𝑠−𝜏}                    

𝔼{2𝑒𝑠−𝜏
𝑇 Δ𝐴𝑑𝜏

𝑇 ℛ𝑠+1Δ𝐵𝑠𝑓(𝑒𝑠 + 𝑥̂𝑠)} ≤ 𝔼{𝑒𝑠−𝜏
𝑇 Δ𝐴𝑑𝜏

𝑇 ℛ𝑠+1Δ𝐴𝑑𝜏𝑒𝑠−𝜏 + 𝑓
𝑇(𝑒𝑠 + 𝑥̂𝑠)Δ𝐵𝑠

𝑇ℛ𝑠+1Δ𝐵𝑠𝑓(𝑒𝑠 + 𝑥̂𝑠)}     

𝔼{2𝑒𝑠−𝜏
𝑇 Δ𝐴𝑑𝜏

𝑇 ℛ𝑠+1𝐾𝑠𝜀𝑠} ≤ 𝔼{𝑒𝑠−𝜏
𝑇 Δ𝐴𝑑𝜏

𝑇 ℛ𝑠+1Δ𝐴𝑑𝜏𝑒𝑠−𝜏 + 𝜀𝑠
𝑇𝐾𝑠

𝑇ℛ𝑠+1𝐾𝑠𝜀𝑠}                         

𝔼{−2𝑒𝑠−𝜏
𝑇 Δ𝐴𝑑𝜏

𝑇 ℛ𝑠+1𝐵̄𝑓(𝑥̂𝑠)} ≤ 𝔼{𝑒𝑠−𝜏
𝑇 Δ𝐴𝑑𝜏

𝑇 ℛ𝑠+1Δ𝐴𝑑𝜏𝑒𝑠−𝜏 + 𝑓
𝑇(𝑥̂𝑠)𝐵̄

𝑇ℛ𝑠+1𝐵̄𝑓(𝑥̂𝑠)}                    

𝔼{2𝑥̂𝑠−𝜏
𝑇 Δ𝐴𝑑𝜏

𝑇 ℛ𝑠+1Δ𝐵𝑠𝑓(𝑒𝑠 + 𝑥̂𝑠)} ≤ 𝔼{𝑥̂𝑠−𝜏
𝑇 Δ𝐴𝑑𝜏

𝑇 ℛ𝑠+1Δ𝐴𝑑𝜏𝑥̂𝑠−𝜏 + 𝑓
𝑇(𝑒𝑠 + 𝑥̂𝑠)Δ𝐵𝑠

𝑇ℛ𝑠+1Δ𝐵𝑠𝑓(𝑒𝑠 + 𝑥̂𝑠)}    

𝔼{−2𝑥̂𝑠−𝜏
𝑇 Δ𝐴𝑑𝜏

𝑇 ℛ𝑠+1𝐵̄𝑓(𝑥̂𝑠)} ≤ 𝔼{𝑥̂𝑠−𝜏
𝑇 Δ𝐴𝑑𝜏

𝑇 ℛ𝑠+1Δ𝐴𝑑𝜏𝑥̂𝑠−𝜏 + 𝑓
𝑇(𝑥̂𝑠)𝐵̄

𝑇ℛ𝑠+1𝐵̄𝑓(𝑥̂𝑠)}                   

𝔼{2𝑥̂𝑠−𝜏
𝑇 Δ𝐴𝑑𝜏

𝑇 ℛ𝑠+1𝐾𝑠𝜀𝑠} ≤ 𝔼{𝑥̂𝑠−𝜏
𝑇 Δ𝐴𝑑𝜏

𝑇 ℛ𝑠+1Δ𝐴𝑑𝜏𝑥̂𝑠−𝜏 + 𝜀𝑠
𝑇𝐾𝑠

𝑇ℛ𝑠+1𝐾𝑠𝜀𝑠}                       

𝔼{2𝑓𝑇(𝑒𝑠 + 𝑥̂𝑠)Δ𝐵𝑠
𝑇ℛ𝑠+1𝐾𝑠𝜀𝑠} ≤ 𝔼{𝑓

𝑇(𝑒𝑠 + 𝑥̂𝑠)Δ𝐵𝑠
𝑇ℛ𝑠+1Δ𝐵𝑠𝑓(𝑒𝑠 + 𝑥̂𝑠) + 𝜀𝑠

𝑇𝐾𝑠
𝑇ℛ𝑠+1𝐾𝑠𝜀𝑠}             

𝔼{−2𝑓𝑇(𝑒𝑠 + 𝑥̂𝑠)Δ𝐵𝑠
𝑇ℛ𝑠+1𝐵̄𝑓(𝑥̂𝑠)} ≤ 𝔼{𝑓

𝑇(𝑒𝑠 + 𝑥̂𝑠)Δ𝐵𝑠
𝑇ℛ𝑠+1Δ𝐵𝑠𝑓(𝑥̂𝑠) + 𝑓

𝑇(𝑥̂𝑠)𝐵̄
𝑇ℛ𝑠+1𝐵̄𝑓(𝑥̂𝑠)}                 

𝔼{−2𝜀𝑠
𝑇𝐾𝑠

𝑇ℛ𝑠+1𝐵̄𝑓(𝑥̂𝑠)} ≤ 𝔼{𝜀𝑠
𝑇𝐾𝑠

𝑇ℛ𝑠+1𝐾𝑠𝜀𝑠 + 𝑓
𝑇(𝑥̂𝑠)𝐵̄

𝑇ℛ𝑠+1𝐵̄𝑓(𝑥̂𝑠)}                          

𝔼{−2𝑣2𝑠
𝑇 𝐸𝑠

𝑇𝐾𝑠
𝑇ℛ𝑠+1𝐾𝑠𝜀𝑠} ≤ 𝔼{𝑣2𝑠

𝑇 𝐸𝑠
𝑇𝐾𝑠

𝑇ℛ𝑠+1𝐾𝑠𝐸𝑠𝑣2𝑠 + 𝜀𝑠
𝑇𝐾𝑠

𝑇ℛ𝑠+1𝐾𝑠𝜀𝑠}                           

Furthermore, through systematic collation and integration of the aforementioned analysis, the following results 

are derived: 

𝔼{Δℳ(𝑒𝑠)} ≤ 𝔼{10𝑒𝑠
𝑇𝐴̄𝑇ℛ𝑠+1𝐴̄𝑒𝑠 + 11𝑒𝑠

𝑇𝐷𝑠
𝑇𝐾𝑠

𝑇ℛ𝑠+1𝐾𝑠𝐷𝑠𝑒𝑠 + 11𝑒𝑠
𝑇Δ𝐴𝑠

𝑇ℛ𝑠+1Δ𝐴𝑠𝑒𝑠 + 11𝑥̂𝑠
𝑇Δ𝐴𝑠

𝑇ℛ𝑠+1Δ𝐴𝑠𝑥̂𝑠 

+11𝑒𝑠−𝜏
𝑇 𝐴̄𝜏

𝑇ℛ𝑠+1𝐴̄𝜏𝑒𝑠−𝜏 + 10𝑓
𝑇(𝑒𝑠 + 𝑥̂𝑠)𝐵̄

𝑇ℛ𝑠+1𝐵̄𝑓(𝑒𝑠 + 𝑥̂𝑠) + 11𝑒𝑠−𝜏
𝑇 Δ𝐴𝑑𝜏

𝑇 ℛ𝑠+1Δ𝐴𝑑𝜏𝑒𝑠−𝜏 

+11𝑥̂𝑠−𝜏
𝑇 Δ𝐴𝑑𝜏

𝑇 ℛ𝑠+1Δ𝐴𝑑𝜏𝑥̂𝑠−𝜏 + 11𝑓
𝑇(𝑒𝑠 + 𝑥̂𝑠)Δ𝐵𝑠

𝑇ℛ𝑠+1Δ𝐵𝑠𝑓(𝑒𝑠 + 𝑥̂𝑠) + 𝑣1𝑠
𝑇 𝐶𝑠

𝑇ℛ𝑠+1𝐶𝑠𝑣1𝑠 

+2𝑣2𝑠
𝑇 𝐸𝑠

𝑇𝐾𝑠
𝑇ℛ𝑠+1𝐾𝑠𝐸𝑠𝑣2𝑠 + 11𝑓

𝑇(𝑥̂𝑠)𝐵̄
𝑇ℛ𝑠+1𝐵̄𝑓(𝑥̂𝑠) + 12𝜀𝑠

𝑇𝐾𝑠
𝑇ℛ𝑠+1𝐾𝑠𝜀𝑠 + 2𝑒𝑠

𝑇𝐴̄𝑇ℛ𝑠+1𝐵̄𝑓(𝑒𝑠 + 𝑥̂𝑠) 

 +𝑒𝑠
𝑇𝔔𝑠𝑒𝑠−𝑒𝑠−𝜏

𝑇 𝔔𝑠−𝜏𝑒𝑠−𝜏 − 𝑒𝑠
𝑇ℛ𝑠𝑒𝑠 +

1

𝜃
(𝜆𝜂𝑠 + 𝜎 − 𝜀𝑠

𝑇𝜀𝑠) −
𝜂𝑠

𝜃
}  (20) 

Adding the zero term 𝑧̃𝑠
𝑇𝑧̃𝑠 − 𝛾

2𝑣𝑠
𝑇𝒰𝜑𝑣𝑠 − 𝑧̃𝑠

𝑇𝑧̃𝑠 + 𝛾
2𝑣𝑠

𝑇𝒰𝜑𝑣𝑠 to 𝔼{Δℳ(𝑒𝑠)}, it is straightforward to obtain 

 𝔼{Δℳ(𝑒𝑠)} ≤ 𝔼 {[Π𝑠
𝑇 𝑣𝑠

𝑇]Θ̃ [
Π𝑠
𝑣𝑠
] − 𝑧̃𝑠

𝑇𝑧̃𝑠 + 𝛾
2𝑣𝑠

𝑇𝒰𝜑𝑣𝑠}  (21) 

where 

Π𝑠 = [𝑒𝑠
𝑇 𝑓𝑇(𝑒𝑠 + 𝑥̂𝑠) 1 𝑒𝑠−𝜏

𝑇 𝜀𝑠
𝑇 (𝜂𝑠

1

2)𝑇]
𝑇

 

Θ̃ =

[
 
 
 
 
 
 
 
 
Θ̃11 𝐴̄𝑇ℛ𝑠+1𝐵̄ 0 0 0 0 0 0

∗ Θ̃22 0 0 0 0 0 0

∗ ∗ Θ̃33 0 0 0 0 0
∗ ∗ ∗ Θ44 0 0 0 0

∗ ∗ ∗ ∗ Θ̃55 0 0 0

∗ ∗ ∗ ∗ ∗ Θ̃66 0 0
∗ ∗ ∗ ∗ ∗ ∗ Θ77 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ Θ88]
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Θ̃11 = 10𝐴̄
𝑇ℛ𝑠+1𝐴̄ + 11𝐷𝑠

𝑇𝐾𝑠
𝑇ℛ𝑠+1𝐾𝑠𝐷𝑠 + 11Δ𝐴𝑠

𝑇ℛ𝑠+1Δ𝐴𝑠 +𝔔𝑠 +𝑀𝑠
𝑇𝑀𝑠 − ℛ𝑠 

Θ̃22 = 11Δ𝐵𝑠
𝑇ℛ𝑠+1Δ𝐵𝑠 + 10𝐵̄

𝑇ℛ𝑠+1𝐵̄ 

Θ̃33 = 11𝑥̂𝑠
𝑇Δ𝐴𝑠

𝑇ℛ𝑠+1Δ𝐴𝑠𝑥̂𝑠 + 11𝑥̂𝑠−𝜏
𝑇 Δ𝐴𝑑𝜏

𝑇 ℛ𝑠+1Δ𝐴𝑑𝜏𝑥̂𝑠−𝜏 + 11𝑓
𝑇(𝑥̂𝑠)𝐵̄

𝑇ℛ𝑠+1𝐵̄𝑓(𝑥̂𝑠) +
𝜎

𝜃
 

Θ̃55 = 12𝐾𝑠
𝑇ℛ𝑠+1𝐾𝑠 −

1

𝜃
𝐼, Θ̃66 =

𝜆−1

𝜃
𝐼          (22) 

with 𝛩44, 𝛩77 and 𝛩88 defined below (17). 

Based on Lemma 1 and (5), it follows that 

𝔼{Δℳ(𝑒𝑠)} ≤ 𝔼 {[Π𝑠
𝑇 𝑣𝑠

𝑇]Θ̃ [
Π𝑠
𝑣𝑠
] − 𝑧̃𝑠

𝑇𝑧̃𝑠 + 𝛾
2𝑣𝑠

𝑇𝒰𝜑𝑣𝑠 − [𝑒𝑠
𝑇𝑅1𝑠𝑒𝑠 + 2𝑒𝑠

𝑇𝑅2𝑠𝑓(𝑥̂𝑠 + 𝑒𝑠) + 2𝑒𝑠
𝑇𝑅3𝑠

𝑇  

−2𝑓𝑇(𝑥̂𝑠 + 𝑒𝑠)𝑓(𝑥̂𝑠) + 𝑓
𝑇(𝑥̂𝑠 + 𝑒𝑠)𝑓(𝑥̂𝑠 + 𝑒𝑠) + 𝑓

𝑇(𝑥̂𝑠)𝑓(𝑥̂𝑠)] + 𝜅𝑠 (
𝜂𝑠
𝜃
+ 𝜎 − 𝜀𝑠

𝑇𝜀𝑠)} 

= 𝔼 {[Π𝑠
𝑇 𝑣𝑠

𝑇]Θ [
Π𝑠
𝑣𝑠
] − 𝑧̃𝑠

𝑇𝑧̃𝑠 + 𝛾
2𝑣𝑠

𝑇𝒰𝜑𝑣𝑠}  (23) 

where 𝛩 is defined in (16) and 𝜅𝑠 depicts a positive scalar. 

Summing both sides of (23) with respect to 𝑠 from 0 to 𝑁 − 1, it is straightforward to get 

∑𝔼

𝑁−1

𝑠=0

{Δℳ(𝑒𝑠)} = 𝔼 {𝑒𝑁
𝑇ℛ𝑁𝑒𝑁 − 𝑒0

𝑇ℛ0𝑒0 + ∑ 𝑒𝑙
𝑇

𝑁−1

𝑙=𝑁−𝜏

𝔔𝑙𝑒𝑙 − ∑ 𝑒𝑙
𝑇

−1

𝑙=−𝜏

𝔔𝑙𝑒𝑙 +
𝜂𝑁
𝜃
} 

≤ 𝔼 {∑[Π𝑠
𝑇 𝑣𝑠

𝑇]

𝑁−1

𝑠=0

Θ [
Π𝑠
𝑣𝑠
]} − 𝔼 {∑(𝑧̃𝑠

𝑇𝑧̃𝑠 − 𝛾
2𝑣𝑠

𝑇𝒰𝜑𝑣𝑠)

𝑁−1

𝑠=0

} 

Furthermore, we obtain 

𝐽1 = 𝔼 {∑ (‖𝑧̃𝑠‖
2 − 𝛾2‖𝑣𝑠‖𝒰𝜑

2 )

𝑁−1

𝑠=0

} − 𝛾2𝔼 {𝑒0
𝑇𝒰𝜙𝑒0 + ∑ 𝑒𝑙

𝑇

−1

𝑙=−𝜏

𝒰𝜓𝑒𝑙} 

≤ −𝔼 {𝑒𝑁
𝑇ℛ𝑁𝑒𝑁 − 𝑒0

𝑇ℛ0𝑒0 + ∑ 𝑒𝑙
𝑇

𝑁−1

𝑙=𝑁−𝜏

𝔔𝑙𝑒𝑙 − ∑ 𝑒𝑙
𝑇

−1

𝑙=−𝜏

𝔔𝑙𝑒𝑙 +
𝜂𝑁
𝜃
} 

−𝛾2𝔼 {𝑒0
𝑇𝒰𝜙𝑒0 + ∑ 𝑒𝑙

𝑇

−1

𝑙=−𝜏

𝒰𝜓𝑒𝑙} + 𝔼 {∑[Π𝑠
𝑇 𝑣𝑠

𝑇]

𝑁−1

𝑠=0

Θ [
Π𝑠
𝑣𝑠
]} 

= 𝔼 {∑[Π𝑠
𝑇 𝑣𝑠

𝑇]

𝑁−1

𝑠=0

Θ [
Π𝑠
𝑣𝑠
] + 𝑒0

𝑇(ℛ0 − 𝛾
2𝒰𝜙)𝑒0 + ∑ 𝑒𝑙

𝑇

−1

𝑙=−𝜏

(𝔔𝑙 − 𝛾
2𝒰𝜓)𝑒𝑙} 

−𝔼 {𝑒𝑁
𝑇ℛ𝑁𝑒𝑁 + ∑ 𝑒𝑙

𝑇

𝑁−1

𝑙=𝑁−𝜏

𝔔𝑙𝑒𝑙 +
𝜂𝑁
𝜃
} 

From the conditions Θ < 0, ℛ𝑁 > 0, 𝔔𝑙 > 0, ℛ0 ≤ 𝛾
2𝒰𝜙, 𝜂𝑁 > 0 and 𝔔𝑙 ≤ 𝛾

2𝒰𝜓(𝑙 = −𝜏,−𝜏 + 1,… ,−1), it is 

straightforward to derive 𝐽1 < 0. 

3.2. Variance Constraint Analysis 

Subsequently, we begin to analyze the variance constraint, that is, the sufficient condition is derived to guarantee 

the EVB by using the stochastic analysis technique. 

 

(24) 

(25) 
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Theorem 2: Consider the MNNs with variance constraint (1). Given the TVSE gain matrix 𝐾𝑠 in (7), under the initial 

condition 𝒢0 = 𝑋0, if there exist PDRVMs {𝒢𝑠}1≤𝑠≤𝑁+1 satisfying the inequality 

 𝒢𝑠+1 ≥ 𝔗(𝒢𝑠)  (26) 

where 

 𝔗(𝒢𝑠) = 10𝐴̄𝒢𝑠𝐴̄
𝑇 + 10𝐾𝑠𝐷𝑠𝒢𝑠𝐷𝑠

𝑇𝐾𝑠
𝑇 + 10Δ𝐴𝑠𝒢𝑠Δ𝐴𝑠

𝑇 + 10Δ𝐴𝑠𝑥̂𝑠𝑥̂𝑠
𝑇Δ𝐴𝑠

𝑇 + 10𝐴̄𝜏𝒢𝑠−𝜏𝐴̄𝜏
𝑇 + 10𝔛tr(𝒢𝑠)𝐵̄𝐵̄

𝑇 

+10Δ𝐴𝑑𝜏𝒢𝑠−𝜏Δ𝐴𝑑𝜏
𝑇 + 10Δ𝐴𝑑𝜏𝑥̂𝑠−𝜏𝑥̂𝑠−𝜏

𝑇 Δ𝐴𝑑𝜏
𝑇 + 20𝔛tr(𝒢𝑠)Δ𝐵𝑠Δ𝐵𝑠

𝑇 + 20𝔛tr(𝑥̂𝑠𝑥̂𝑠
𝑇)Δ𝐵𝑠Δ𝐵𝑠

𝑇 + 11𝜛𝐾𝑠𝐾𝑠
𝑇 

+𝐶𝑠𝒱1𝑠𝐶𝑠
𝑇 + 2𝐾𝑠𝐸𝑠𝒱2𝑠𝐸𝑠

𝑇𝐾𝑠
𝑇 , 𝔛 =

𝜌 +
1

𝜌

2(1 − 𝜌)
tr(𝐔1

𝑇𝐔1) +
1

𝜌(1 − 𝜌)
tr(𝐔2

𝑇𝐔2) 

𝜛 =
1+𝜃

𝜃2
𝜂𝑠
2 + (1 +

1

𝜃
) 𝜎2              (27) 

then it follows that 𝒢𝑠 ≥ 𝑋𝑠∀𝑠 ∈ {1,2, … , 𝑁 + 1}. 

Proof: In light of (9), the EE covariance matrix 𝑋𝑠+1 can be derived as: 

𝑋𝑠+1 = 𝔼{𝑒𝑠+1𝑒𝑠+1
𝑇 } 

= 𝔼{𝐴̄𝑒𝑠𝑒𝑠
𝑇𝐴̄𝑇 + 𝐾𝑠𝐷𝑠𝑒𝑠𝑒𝑠

𝑇𝐷𝑠
𝑇𝐾𝑠

𝑇 + Δ𝐴𝑠𝑒𝑠𝑒𝑠
𝑇Δ𝐴𝑠

𝑇 + Δ𝐴𝑠𝑥̂𝑠𝑥̂𝑠
𝑇Δ𝐴𝑠

𝑇 + 𝐴̄𝜏𝑒𝑠−𝜏𝑒𝑠−𝜏
𝑇 𝐴̄𝜏

𝑇 + 𝐵̄𝑓̄(𝑒𝑠)𝑓̄
𝑇(𝑒𝑠)𝐵̄

𝑇 

+Δ𝐴𝑑𝜏𝑒𝑠−𝜏𝑒𝑠−𝜏
𝑇 Δ𝐴𝑑𝜏

𝑇 + Δ𝐴𝑑𝜏𝑥̂𝑠−𝜏𝑥̂𝑠−𝜏
𝑇 Δ𝐴𝑑𝜏

𝑇 + Δ𝐵𝑠𝑓(𝑒𝑠 + 𝑥̂𝑠)𝑓
𝑇(𝑒𝑠 + 𝑥̂𝑠)Δ𝐵𝑠

𝑇 + 𝐶𝑠𝑣1𝑠𝑣1𝑠
𝑇 𝐶𝑠

𝑇 + 𝐾𝑠𝐸𝑠𝑣2𝑠𝑣2𝑠
𝑇  

× 𝐸𝑠
𝑇𝐾𝑠

𝑇 + 𝐾𝑠𝜀𝑠𝜀𝑠
𝑇𝐾𝑠

𝑇 − 𝐾𝑠𝐷𝑠𝑒𝑠𝑒𝑠
𝑇𝐴̄𝑇 − 𝐴̄𝑒𝑠𝑒𝑠

𝑇𝐷𝑠
𝑇𝐾𝑠

𝑇 + Δ𝐴𝑠𝑒𝑠𝑒𝑠
𝑇𝐴̄𝑇 + 𝐴̄𝑒𝑠𝑒𝑠

𝑇Δ𝐴𝑠
𝑇 + Δ𝐴𝑠𝑥̂𝑠𝑒𝑠

𝑇𝐴̄𝑇 + 𝐴̄𝑒𝑠 

× 𝑥̂𝑠
𝑇Δ𝐴𝑠

𝑇 + 𝐴̄𝜏𝑒𝑠−𝜏𝑒𝑠
𝑇𝐴̄𝑇 + 𝐴̄𝑒𝑠𝑒𝑠−𝜏

𝑇 𝐴̄𝜏
𝑇 + 𝐵̄𝑓̄(𝑒𝑠)𝑒𝑠

𝑇𝐴̄𝑇 + 𝐴̄𝑒𝑠𝑓̄
𝑇(𝑒𝑠)𝐵̄

𝑇 + Δ𝐴𝑑𝜏𝑒𝑠−𝜏𝑒𝑠
𝑇𝐴̄𝑇 + 𝐴̄𝑒𝑠𝑒𝑠−𝜏

𝑇 Δ𝐴𝑑𝜏
𝑇  

+Δ𝐴𝑑𝜏𝑥̂𝑠−𝜏𝑒𝑠
𝑇𝐴̄𝑇 + 𝐴̄𝑒𝑠𝑥̂𝑠−𝜏

𝑇 Δ𝐴𝑑𝜏
𝑇 + Δ𝐵𝑠𝑓(𝑒𝑠 + 𝑥̂𝑠)𝑒𝑠

𝑇𝐴̄𝑇 + 𝐴̄𝑒𝑠𝑓
𝑇(𝑒𝑠 + 𝑥̂𝑠)Δ𝐵𝑠

𝑇 + 𝐾𝑠𝜀𝑠𝑒𝑠
𝑇𝐴̄𝑇 + 𝐴̄𝑒𝑠𝜀𝑠

𝑇𝐾𝑠
𝑇 

−Δ𝐴𝑠𝑒𝑠𝑒𝑠
𝑇𝐷𝑠

𝑇𝐾𝑠
𝑇 − 𝐾𝑠𝐷𝑠𝑒𝑠𝑒𝑠

𝑇Δ𝐴𝑠
𝑇 − Δ𝐴𝑠𝑥̂𝑠𝑒𝑠

𝑇𝐷𝑠
𝑇𝐾𝑠

𝑇 − 𝐾𝑠𝐷𝑠𝑒𝑠𝑥̂𝑠
𝑇Δ𝐴𝑠

𝑇 − 𝐴̄𝜏𝑒𝑠−𝜏𝑒𝑠
𝑇𝐷𝑠

𝑇𝐾𝑠
𝑇 − 𝐾𝑠𝐷𝑠𝑒𝑠𝑒𝑠−𝜏

𝑇 𝐴̄𝜏
𝑇 

−𝐵̄𝑓̄(𝑒𝑠)𝑒𝑠
𝑇𝐷𝑠

𝑇𝐾𝑠
𝑇 − 𝐾𝑠𝐷𝑠𝑒𝑠𝑓̄

𝑇(𝑒𝑠)𝐵̄
𝑇 − Δ𝐴𝑑𝜏𝑒𝑠−𝜏𝑒𝑠

𝑇𝐷𝑠
𝑇𝐾𝑠

𝑇 − 𝐾𝑠𝐷𝑠𝑒𝑠𝑒𝑠−𝜏
𝑇 Δ𝐴𝑑𝜏

𝑇 − Δ𝐴𝑠𝑥̂𝑠−𝜏𝑒𝑠
𝑇𝐷𝑠

𝑇𝐾𝑠
𝑇 − 𝐾𝑠𝐷𝑠  

× 𝑒𝑠𝑥̂𝑠−𝜏
𝑇 Δ𝐴𝑠

𝑇 − Δ𝐵𝑠𝑓(𝑒𝑠 + 𝑥̂𝑠)𝑒𝑠
𝑇𝐷𝑠

𝑇𝐾𝑠
𝑇 − 𝐾𝑠𝐷𝑠𝑒𝑠𝑓

𝑇(𝑒𝑠 + 𝑥̂𝑠)Δ𝐵𝑠
𝑇 − 𝐾𝑠𝜀𝑠𝑒𝑠

𝑇𝐷𝑠
𝑇𝐾𝑠

𝑇 − 𝐾𝑠𝐷𝑠𝑒𝑠𝜀𝑠
𝑇𝐾𝑠

𝑇 + Δ𝐴𝑠 

× 𝑥̂𝑠𝑒𝑠
𝑇Δ𝐴𝑠

𝑇 + Δ𝐴𝑠𝑒𝑠𝑥̂𝑠
𝑇Δ𝐴𝑠

𝑇 + 𝐴̄𝜏𝑒𝑠−𝜏𝑒𝑠
𝑇Δ𝐴𝑠

𝑇 + Δ𝐴𝑠𝑒𝑠𝑒𝑠−𝜏
𝑇 𝐴̄𝜏

𝑇 + 𝐵̄𝑓̄(𝑒𝑠)𝑒𝑠
𝑇Δ𝐴𝑠

𝑇 + Δ𝐴𝑠𝑒𝑠𝑓
𝑇(𝑒𝑠)𝐵̄

𝑇 + Δ𝐴𝑑𝜏𝑒𝑠−𝜏𝑒𝑠
𝑇 

× Δ𝐴𝑠
𝑇 + Δ𝐴𝑠𝑒𝑠𝑒𝑠−𝜏

𝑇 Δ𝐴𝑑𝜏
𝑇 + Δ𝐴𝑠𝑥̂𝑠−𝜏𝑒𝑠

𝑇Δ𝐴𝑠
𝑇 + Δ𝐴𝑠𝑒𝑠𝑥̂𝑠−𝜏

𝑇 Δ𝐴𝑠
𝑇 + Δ𝐵𝑠𝑓(𝑒𝑠 + 𝑥̂𝑠)𝑒𝑠

𝑇Δ𝐴𝑠
𝑇 + Δ𝐴𝑠𝑒𝑠𝑓

𝑇(𝑒𝑠 + 𝑥̂𝑠)Δ𝐵𝑠
𝑇  

+𝐾𝑠𝜀𝑠𝑒𝑠
𝑇Δ𝐴𝑠

𝑇 + Δ𝐴𝑠𝑒𝑠𝜀𝑠
𝑇𝐾𝑠

𝑇 + 𝐴̄𝜏𝑒𝑠−𝜏𝑥̂𝑠
𝑇Δ𝐴𝑠

𝑇 + Δ𝐴𝑠𝑥̂𝑠𝑒𝑠−𝜏
𝑇 𝐴̄𝜏

𝑇 + 𝐵̄𝑓̄(𝑒𝑠)𝑥̂𝑠
𝑇Δ𝐴𝑠

𝑇 + Δ𝐴𝑠𝑥̂𝑠𝑓̄
𝑇(𝑒𝑠)𝐵̄

𝑇 + Δ𝐴𝑑𝜏𝑒𝑠−𝜏  

× 𝑥̂𝑠
𝑇Δ𝐴𝑠

𝑇 + Δ𝐴𝑠𝑥̂𝑠𝑒𝑠−𝜏
𝑇 Δ𝐴𝑑𝜏

𝑇 + Δ𝐴𝑠𝑥̂𝑠−𝜏𝑥̂𝑠
𝑇Δ𝐴𝑠

𝑇 + Δ𝐴𝑠𝑥̂𝑠𝑥̂𝑠−𝜏
𝑇 Δ𝐴𝑠

𝑇 + Δ𝐵𝑠𝑓(𝑒𝑠 + 𝑥̂𝑠)𝑥̂𝑠
𝑇Δ𝐴𝑠

𝑇 + Δ𝐴𝑠𝑥̂𝑠𝑓
𝑇(𝑒𝑠 + 𝑥̂𝑠) 

× Δ𝐵𝑠
𝑇 + 𝐾𝑠𝜀𝑠𝑥̂𝑠

𝑇Δ𝐴𝑠
𝑇 + Δ𝐴𝑠𝑥̂𝑠𝜀𝑠

𝑇𝐾𝑠
𝑇 + 𝐵̄𝑓̄(𝑒𝑠)𝑒𝑠−𝜏

𝑇 𝐴̄𝜏
𝑇 + 𝐴̄𝜏𝑒𝑠−𝜏𝑓̄

𝑇(𝑒𝑠)𝐵̄
𝑇 + Δ𝐴𝑑𝜏𝑒𝑠−𝜏𝑒𝑠−𝜏

𝑇 𝐴̄𝜏
𝑇 + 𝐴̄𝜏𝑒𝑠−𝜏𝑒𝑠−𝜏

𝑇 Δ𝐴𝑑𝜏
𝑇  

+Δ𝐴𝑠𝑥̂𝑠−𝜏𝑒𝑠−𝜏
𝑇 𝐴̄𝜏

𝑇 + 𝐴̄𝜏𝑒𝑠−𝜏𝑥̂𝑠−𝜏
𝑇 Δ𝐴𝑠

𝑇 + Δ𝐵𝑠𝑓(𝑒𝑠 + 𝑥̂𝑠)𝑒𝑠−𝜏
𝑇 𝐴̄𝜏

𝑇 + 𝐴̄𝜏𝑒𝑠−𝜏𝑓
𝑇(𝑒𝑠 + 𝑥̂𝑠)Δ𝐵𝑠

𝑇 + 𝐾𝑠𝜀𝑠𝑒𝑠−𝜏
𝑇 𝐴̄𝜏

𝑇 + 𝐴̄𝜏𝑒𝑠−𝜏 

× 𝜀𝑠
𝑇𝐾𝑠

𝑇 + Δ𝐴𝑑𝜏𝑒𝑠−𝜏𝑓̄
𝑇(𝑒𝑠)𝐵̄

𝑇 + 𝐵̄𝑓̄(𝑒𝑠)𝑒𝑠−𝜏
𝑇 Δ𝐴𝑑𝜏

𝑇 + Δ𝐴𝑠𝑥̂𝑠−𝜏𝑓̄
𝑇(𝑒𝑠)𝐵̄

𝑇 + 𝐵̄𝑓̄(𝑒𝑠)𝑥̂𝑠−𝜏
𝑇 Δ𝐴𝑠

𝑇 + Δ𝐵𝑠𝑓(𝑒𝑠 + 𝑥̂𝑠) 

× 𝑓̄𝑇(𝑒𝑠)𝐵̄
𝑇 + 𝐵̄𝑓̄(𝑒𝑠)𝑓

𝑇(𝑒𝑠 + 𝑥̂𝑠)Δ𝐵𝑠
𝑇 + 𝐾𝑠𝜀𝑠𝑓̄

𝑇(𝑒𝑠)𝐵̄
𝑇 + 𝐵̄𝑓̄(𝑒𝑠)𝜀𝑠

𝑇𝐾𝑠
𝑇 + Δ𝐴𝑠𝑥̂𝑠−𝜏𝑒𝑠−𝜏

𝑇 Δ𝐴𝑑𝜏
𝑇 + Δ𝐴𝑑𝜏𝑒𝑠−𝜏𝑥̂𝑠−𝜏

𝑇  

× Δ𝐴𝑠
𝑇 + Δ𝐵𝑠𝑓(𝑒𝑠 + 𝑥̂𝑠)𝑒𝑠−𝜏

𝑇 Δ𝐴𝑑𝜏
𝑇 + Δ𝐴𝑑𝜏𝑒𝑠−𝜏𝑓

𝑇(𝑒𝑠 + 𝑥̂𝑠)Δ𝐵𝑠
𝑇 + 𝐾𝑠𝜀𝑠𝑒𝑠−𝜏

𝑇 Δ𝐴𝑑𝜏
𝑇 + Δ𝐴𝑑𝜏𝑒𝑠−𝜏𝜀𝑠

𝑇𝐾𝑠
𝑇 + Δ𝐵𝑠𝑓(𝑒𝑠 + 𝑥̂𝑠) 

× 𝑥̂𝑠−𝜏
𝑇 Δ𝐴𝑑𝜏

𝑇 + Δ𝐴𝑑𝜏𝑥̂𝑠−𝜏𝑓
𝑇(𝑒𝑠 + 𝑥̂𝑠)Δ𝐵𝑠

𝑇 + 𝐾𝑠𝜀𝑠𝑥̂𝑠−𝜏
𝑇 Δ𝐴𝑑𝜏

𝑇 + Δ𝐴𝑑𝜏𝑥̂𝑠−𝜏𝜀𝑠
𝑇𝐾𝑠

𝑇 + 𝐾𝑠𝜀𝑠𝑓
𝑇(𝑒𝑠 + 𝑥̂𝑠)Δ𝐵𝑠

𝑇 + Δ𝐵𝑠𝑓(𝑒𝑠 + 𝑥̂𝑠) 

       × 𝜀𝑠𝑇𝐾𝑠𝑇 − 𝐾𝑠𝜀𝑠𝑣2𝑠𝑇 𝐸𝑠𝑇𝐾𝑠𝑇 − 𝐾𝑠𝐸𝑠𝑣2𝑠𝜀𝑠𝑇𝐾𝑠𝑇}             (28) 

Based on the inequality 𝑥𝑦𝑇 + 𝑦𝑥𝑇 ≤ 𝑥𝑥𝑇 + 𝑦𝑦𝑇 , the following result can be derived 

𝔼{−𝐾𝑠𝐷𝑠𝑒𝑠𝑒𝑠
𝑇𝐴̄𝑇 − 𝐴̄𝑒𝑠𝑒𝑠

𝑇𝐷𝑠
𝑇𝐾𝑠

𝑇} ≤ 𝔼{𝐴̄𝑒𝑠𝑒𝑠
𝑇𝐴̄𝑇 + 𝐾𝑠𝐷𝑠𝑒𝑠𝑒𝑠

𝑇𝐷𝑠
𝑇𝐾𝑠

𝑇} 

     𝔼{Δ𝐴𝑠𝑒𝑠𝑒𝑠
𝑇𝐴̄𝑇 + 𝐴̄𝑒𝑠𝑒𝑠

𝑇Δ𝐴𝑠
𝑇} ≤ 𝔼{𝐴̄𝑒𝑠𝑒𝑠

𝑇𝐴̄𝑇 + Δ𝐴𝑠𝑒𝑠𝑒𝑠
𝑇Δ𝐴𝑠

𝑇} 
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𝔼{Δ𝐴𝑠𝑥̂𝑠𝑒𝑠
𝑇𝐴̄𝑇 + 𝐴̄𝑒𝑠𝑥̂𝑠

𝑇Δ𝐴𝑠
𝑇} ≤ 𝔼{𝐴̄𝑒𝑠𝑒𝑠

𝑇𝐴̄𝑇 + 𝐴̄𝑑𝑥̂𝑠𝑥̂𝑠
𝑇𝐴̄𝑑

𝑇}      

𝔼{𝐴̄𝜏𝑒𝑠−𝜏𝑒𝑠
𝑇𝐴̄𝑇 + 𝐴̄𝑒𝑠𝑒𝑠−𝜏

𝑇 𝐴̄𝜏
𝑇} ≤ 𝔼{𝐴̄𝑒𝑠𝑒𝑠

𝑇𝐴̄𝑇 + 𝐴̄𝜏𝑒𝑠−𝜏𝑒𝑠−𝜏
𝑇 𝐴̄𝜏

𝑇} 

𝔼{Δ𝐴𝑑𝜏𝑒𝑠−𝜏𝑒𝑠
𝑇𝐴̄𝑇 + 𝐴̄𝑒𝑠𝑒𝑠−𝜏

𝑇 Δ𝐴𝑑𝜏
𝑇 } ≤ 𝔼{𝐴̄𝑒𝑠𝑒𝑠

𝑇𝐴̄𝑇 + Δ𝐴𝑑𝜏𝑒𝑠−𝜏𝑒𝑠−𝜏
𝑇 Δ𝐴𝑑𝜏

𝑇 } 

𝔼{Δ𝐴𝑑𝜏𝑥̂𝑠−𝜏𝑒𝑠
𝑇𝐴̄𝑇 + 𝐴̄𝑒𝑠𝑥̂𝑠−𝜏

𝑇 Δ𝐴𝑑𝜏
𝑇 } ≤ 𝔼{𝐴̄𝑒𝑠𝑒𝑠

𝑇𝐴̄𝑇 + Δ𝐴𝑑𝜏𝑥̂𝑠−𝜏𝑥̂𝑠−𝜏
𝑇 Δ𝐴𝑑𝜏

𝑇 } 

𝔼{Δ𝐵𝑠𝑓(𝑒𝑠 + 𝑥̂𝑠)𝑒𝑠
𝑇𝐴̄𝑇 + 𝐴̄𝑒𝑠𝑓

𝑇(𝑒𝑠 + 𝑥̂𝑠)Δ𝐵𝑠
𝑇} ≤ 𝔼{𝐴̄𝑒𝑠𝑒𝑠

𝑇𝐴̄𝑇 + Δ𝐵𝑠𝑓(𝑒𝑠 + 𝑥̂𝑠)𝑓
𝑇(𝑒𝑠 + 𝑥̂𝑠)Δ𝐵𝑠

𝑇} 

𝔼{𝐵̄𝑓̄(𝑒𝑠)𝑒𝑠
𝑇𝐴̄𝑇 + 𝐴̄𝑒𝑠𝑓̄

𝑇(𝑒𝑠)𝐵̄
𝑇} ≤ 𝔼{𝐴̄𝑒𝑠𝑒𝑠

𝑇𝐴̄𝑇 + 𝐵̄𝑓̄(𝑒𝑠)𝑓̄
𝑇(𝑒𝑠)𝐵̄

𝑇} 

𝔼{𝐾𝑠𝜀𝑠𝑒𝑠
𝑇𝐴̄𝑇 + 𝐴̄𝑒𝑠𝜀𝑠

𝑇𝐾𝑠
𝑇} ≤ 𝔼{𝐴̄𝑒𝑠𝑒𝑠

𝑇𝐴̄𝑇 + 𝐾𝑠𝜀𝑠𝜀𝑠
𝑇𝐾𝑠

𝑇} 

𝔼{−Δ𝐴𝑠𝑒𝑠𝑒𝑠
𝑇𝐷𝑠

𝑇𝐾𝑠
𝑇 − 𝐾𝑠𝐷𝑠𝑒𝑠𝑒𝑠

𝑇Δ𝐴𝑠
𝑇ℛ𝑠+1} ≤ 𝔼{𝐾𝑠𝐷𝑠𝑒𝑠𝑒𝑠

𝑇𝐷𝑠
𝑇𝐾𝑠

𝑇 + Δ𝐴𝑠𝑒𝑠𝑒𝑠
𝑇Δ𝐴𝑠

𝑇}                

𝔼{−Δ𝐴𝑠𝑥̂𝑠𝑒𝑠
𝑇𝐷𝑠

𝑇𝐾𝑠
𝑇 − 𝐾𝑠𝐷𝑠𝑒𝑠𝑥̂𝑠

𝑇Δ𝐴𝑠
𝑇} ≤ 𝔼{𝐾𝑠𝐷𝑠𝑒𝑠𝑒𝑠

𝑇𝐷𝑠
𝑇𝐾𝑠

𝑇 + Δ𝐴𝑠𝑥̂𝑠𝑥̂𝑠
𝑇Δ𝐴𝑠

𝑇}      

𝔼{−𝐴̄𝜏𝑒𝑠−𝜏𝑒𝑠
𝑇𝐷𝑠

𝑇𝐾𝑠
𝑇 − 𝐾𝑠𝐷𝑠𝑒𝑠𝑒𝑠−𝜏

𝑇 𝐴̄𝜏
𝑇} ≤ 𝔼{𝐾𝑠𝐷𝑠𝑒𝑠𝑒𝑠

𝑇𝐷𝑠
𝑇𝐾𝑠

𝑇 + 𝐴̄𝜏𝑒𝑠−𝜏𝑒𝑠−𝜏
𝑇 𝐴̄𝜏

𝑇}     

𝔼{−𝐵̄𝑓̄(𝑒𝑠)𝑒𝑠
𝑇𝐷𝑠

𝑇𝐾𝑠
𝑇 − 𝐾𝑠𝐷𝑠𝑒𝑠𝑓̄

𝑇(𝑒𝑠)𝐵̄
𝑇} ≤ 𝔼{𝐾𝑠𝐷𝑠𝑒𝑠𝑒𝑠

𝑇𝐷𝑠
𝑇𝐾𝑠

𝑇 + 𝐵̄𝑓̄(𝑒𝑠)𝑓̄
𝑇(𝑒𝑠)𝐵̄

𝑇}      

𝔼{−Δ𝐴𝑑𝜏𝑒𝑠−𝜏𝑒𝑠
𝑇𝐷𝑠

𝑇𝐾𝑠
𝑇 − 𝐾𝑠𝐷𝑠𝑒𝑠𝑒𝑠−𝜏

𝑇 Δ𝐴𝑑𝜏
𝑇 } ≤ 𝔼{𝐾𝑠𝐷𝑠𝑒𝑠𝑒𝑠

𝑇𝐷𝑠
𝑇𝐾𝑠

𝑇 + Δ𝐴𝑑𝜏𝑒𝑠−𝜏𝑒𝑠−𝜏
𝑇 Δ𝐴𝑑𝜏

𝑇 }      

𝔼{−Δ𝐴𝑠𝑥̂𝑠−𝜏𝑒𝑠
𝑇𝐷𝑠

𝑇𝐾𝑠
𝑇 − 𝐾𝑠𝐷𝑠𝑒𝑠𝑥̂𝑠−𝜏

𝑇 Δ𝐴𝑠
𝑇} ≤ 𝔼{𝐾𝑠𝐷𝑠𝑒𝑠𝑒𝑠

𝑇𝐷𝑠
𝑇𝐾𝑠

𝑇 + Δ𝐴𝑠𝑥̂𝑠−𝜏𝑥̂𝑠−𝜏
𝑇 Δ𝐴𝑠

𝑇}      

𝔼{−Δ𝐵𝑠𝑓(𝑒𝑠 + 𝑥̂𝑠)𝑒𝑠
𝑇𝐷𝑠

𝑇𝐾𝑠
𝑇 − 𝐾𝑠𝐷𝑠𝑒𝑠𝑓

𝑇(𝑒𝑠 + 𝑥̂𝑠)Δ𝐵𝑠
𝑇} ≤ 𝔼{𝐾𝑠𝐷𝑠𝑒𝑠𝑒𝑠

𝑇𝐷𝑠
𝑇𝐾𝑠

𝑇 + Δ𝐵𝑠𝑓(𝑒𝑠 + 𝑥̂𝑠)𝑓
𝑇(𝑒𝑠 + 𝑥̂𝑠)Δ𝐵𝑠

𝑇}      

𝔼{−𝐾𝑠𝜀𝑠𝑒𝑠
𝑇𝐷𝑠

𝑇𝐾𝑠
𝑇 − 𝐾𝑠𝐷𝑠𝑒𝑠𝜀𝑠

𝑇𝐾𝑠
𝑇} ≤ 𝔼{𝐾𝑠𝐷𝑠𝑒𝑠𝑒𝑠

𝑇𝐷𝑠
𝑇𝐾𝑠

𝑇 + 𝐾𝑠𝜀𝑠𝜀𝑠
𝑇𝐾𝑠

𝑇}           

𝔼{Δ𝐴𝑠𝑥̂𝑠𝑒𝑠
𝑇Δ𝐴𝑠

𝑇 + Δ𝐴𝑠𝑒𝑠𝑥̂𝑠
𝑇Δ𝐴𝑠

𝑇} ≤ 𝔼{Δ𝐴𝑠𝑒𝑠𝑒𝑠
𝑇Δ𝐴𝑠

𝑇 + Δ𝐴𝑠𝑥̂𝑠𝑥̂𝑠
𝑇Δ𝐴𝑠

𝑇} 

𝔼{𝐴̄𝜏𝑒𝑠−𝜏𝑒𝑠
𝑇Δ𝐴𝑠

𝑇 + Δ𝐴𝑠𝑒𝑠𝑒𝑠−𝜏
𝑇 𝐴̄𝜏

𝑇} ≤ 𝔼{Δ𝐴𝑠𝑒𝑠𝑒𝑠
𝑇Δ𝐴𝑠

𝑇 + 𝐴̄𝜏𝑒𝑠−𝜏𝑒𝑠−𝜏
𝑇 𝐴̄𝜏

𝑇} 

𝔼{𝐵̄𝑓̄(𝑒𝑠)𝑒𝑠
𝑇Δ𝐴𝑠

𝑇 + Δ𝐴𝑠𝑒𝑠𝑓̄
𝑇(𝑒𝑠)𝐵̄

𝑇} ≤ 𝔼{Δ𝐴𝑠𝑒𝑠𝑒𝑠
𝑇Δ𝐴𝑠

𝑇 + 𝐵̄𝑓̄(𝑒𝑠)𝑓̄
𝑇(𝑒𝑠)𝐵̄

𝑇} 

𝔼{Δ𝐴𝑑𝜏𝑒𝑠−𝜏𝑒𝑠
𝑇Δ𝐴𝑠

𝑇 + Δ𝐴𝑠𝑒𝑠𝑒𝑠−𝜏
𝑇 Δ𝐴𝑑𝜏

𝑇 } ≤ 𝔼{Δ𝐴𝑠𝑒𝑠𝑒𝑠
𝑇Δ𝐴𝑠

𝑇 + Δ𝐴𝑑𝜏𝑒𝑠−𝜏𝑒𝑠−𝜏
𝑇 Δ𝐴𝑑𝜏

𝑇 } 

𝔼{Δ𝐴𝑠𝑥̂𝑠−𝜏𝑒𝑠
𝑇Δ𝐴𝑠

𝑇 + Δ𝐴𝑠𝑒𝑠𝑥̂𝑠−𝜏
𝑇 Δ𝐴𝑠

𝑇} ≤ 𝔼{Δ𝐴𝑠𝑒𝑠𝑒𝑠
𝑇Δ𝐴𝑠

𝑇 + Δ𝐴𝑠𝑥̂𝑠−𝜏𝑥̂𝑠−𝜏
𝑇 Δ𝐴𝑠

𝑇} 

𝔼{Δ𝐵𝑠𝑓(𝑒𝑠 + 𝑥̂𝑠)𝑒𝑠
𝑇Δ𝐴𝑠

𝑇 + Δ𝐴𝑠𝑒𝑠𝑓
𝑇(𝑒𝑠 + 𝑥̂𝑠)Δ𝐵𝑠

𝑇} ≤ 𝔼{Δ𝐴𝑠𝑒𝑠𝑒𝑠
𝑇Δ𝐴𝑠

𝑇 + Δ𝐵𝑠𝑓(𝑒𝑠 + 𝑥̂𝑠)𝑓
𝑇(𝑒𝑠 + 𝑥̂𝑠)Δ𝐵𝑠

𝑇} 

𝔼{𝐾𝑠𝜀𝑠𝑒𝑠
𝑇Δ𝐴𝑠

𝑇 + Δ𝐴𝑠𝑒𝑠𝜀𝑠
𝑇𝐾𝑠

𝑇} ≤ 𝔼{Δ𝐴𝑠𝑒𝑠𝑒𝑠
𝑇Δ𝐴𝑠

𝑇 + 𝐾𝑠𝜀𝑠𝜀𝑠
𝑇𝐾𝑠

𝑇} 

𝔼{𝐴̄𝜏𝑒𝑠−𝜏𝑥̂𝑠
𝑇Δ𝐴𝑠

𝑇 + Δ𝐴𝑠𝑥̂𝑠𝑒𝑠−𝜏
𝑇 𝐴̄𝜏

𝑇} ≤ 𝔼{Δ𝐴𝑠𝑥̂𝑠𝑥̂𝑠
𝑇Δ𝐴𝑠

𝑇 + 𝐴̄𝜏𝑒𝑠−𝜏𝑒𝑠−𝜏
𝑇 𝐴̄𝜏

𝑇} 

𝔼{𝐵̄𝑓̄(𝑒𝑠)𝑥̂𝑠
𝑇Δ𝐴𝑠

𝑇 + Δ𝐴𝑠𝑥̂𝑠𝑓̄
𝑇(𝑒𝑠)𝐵̄

𝑇} ≤ 𝔼{Δ𝐴𝑠𝑥̂𝑠𝑥̂𝑠
𝑇Δ𝐴𝑠

𝑇 + 𝐵̄𝑓̄(𝑒𝑠)𝑓̄
𝑇(𝑒𝑠)𝐵̄

𝑇} 

𝔼{Δ𝐴𝑑𝜏𝑒𝑠−𝜏𝑥̂𝑠
𝑇Δ𝐴𝑠

𝑇 + Δ𝐴𝑠𝑥̂𝑠𝑒𝑠−𝜏
𝑇 Δ𝐴𝑑𝜏

𝑇 } ≤ 𝔼{Δ𝐴𝑠𝑥̂𝑠𝑥̂𝑠
𝑇Δ𝐴𝑠

𝑇 + Δ𝐴𝑑𝜏𝑒𝑠−𝜏𝑒𝑠−𝜏
𝑇 Δ𝐴𝑑𝜏

𝑇 } 

𝔼{Δ𝐴𝑠𝑥̂𝑠−𝜏𝑥̂𝑠
𝑇Δ𝐴𝑠

𝑇 + Δ𝐴𝑠𝑥̂𝑠𝑥̂𝑠−𝜏
𝑇 Δ𝐴𝑠

𝑇} ≤ 𝔼{Δ𝐴𝑠𝑥̂𝑠𝑥̂𝑠
𝑇Δ𝐴𝑠

𝑇 + Δ𝐴𝑠𝑥̂𝑠−𝜏𝑥̂𝑠−𝜏
𝑇 Δ𝐴𝑠

𝑇} 

𝔼{Δ𝐵𝑠𝑓(𝑒𝑠 + 𝑥̂𝑠)𝑥̂𝑠
𝑇Δ𝐴𝑠

𝑇 + Δ𝐴𝑠𝑥̂𝑠𝑓
𝑇(𝑒𝑠 + 𝑥̂𝑠)Δ𝐵𝑠

𝑇} ≤ 𝔼{Δ𝐴𝑠𝑥̂𝑠𝑥̂𝑠
𝑇Δ𝐴𝑠

𝑇 + Δ𝐵𝑠𝑓(𝑒𝑠 + 𝑥̂𝑠)𝑓
𝑇(𝑒𝑠 + 𝑥̂𝑠)Δ𝐵𝑠

𝑇} 

𝔼{𝐾𝑠𝜀𝑠𝑥̂𝑠
𝑇Δ𝐴𝑠

𝑇 + Δ𝐴𝑠𝑥̂𝑠𝜀𝑠
𝑇𝐾𝑠

𝑇} ≤ 𝔼{Δ𝐴𝑠𝑥̂𝑠𝑥̂𝑠
𝑇Δ𝐴𝑠

𝑇 + 𝐾𝑠𝜀𝑠𝜀𝑠
𝑇𝐾𝑠

𝑇} 

𝔼{𝐵̄𝑓̄(𝑒𝑠)𝑒𝑠−𝜏
𝑇 𝐴̄𝜏

𝑇 + 𝐴̄𝜏𝑒𝑠−𝜏𝑓̄
𝑇(𝑒𝑠)𝐵̄

𝑇} ≤ 𝔼 {𝐴̄𝜏𝑒𝑠−𝜏𝑒𝑠−𝜏
𝑇 𝐴̄𝜏

𝑇 + 𝐵̄𝑓̄(𝑒𝑠)𝑓
𝑇(𝑒𝑠)𝐵̄

𝑇} 

𝔼{Δ𝐴𝑑𝜏𝑒𝑠−𝜏𝑒𝑠−𝜏
𝑇 𝐴̄𝜏

𝑇 + 𝐴̄𝜏𝑒𝑠−𝜏𝑒𝑠−𝜏
𝑇 Δ𝐴𝑑𝜏

𝑇 } ≤ 𝔼{𝐴̄𝜏𝑒𝑠−𝜏𝑒𝑠−𝜏
𝑇 𝐴̄𝜏

𝑇 + Δ𝐴𝑑𝜏𝑒𝑠−𝜏𝑒𝑠−𝜏
𝑇 Δ𝐴𝑑𝜏

𝑇 } 

𝔼{Δ𝐴𝑠𝑥̂𝑠−𝜏𝑒𝑠−𝜏
𝑇 𝐴̄𝜏

𝑇 + 𝐴̄𝜏𝑒𝑠−𝜏𝑥̂𝑠−𝜏
𝑇 Δ𝐴𝑠

𝑇} ≤ 𝔼{𝐴̄𝜏𝑒𝑠−𝜏𝑒𝑠−𝜏
𝑇 𝐴̄𝜏

𝑇 + Δ𝐴𝑠𝑥̂𝑠−𝜏𝑥̂𝑠−𝜏
𝑇 Δ𝐴𝑠

𝑇} 

   𝔼{Δ𝐵𝑠𝑓(𝑒𝑠 + 𝑥̂𝑠)𝑒𝑠−𝜏
𝑇 𝐴̄𝜏

𝑇 + 𝐴̄𝜏𝑒𝑠−𝜏𝑓
𝑇(𝑒𝑠 + 𝑥̂𝑠)Δ𝐵𝑠

𝑇} ≤ 𝔼{Δ𝐴𝑠𝑒𝑠−𝜏𝑒𝑠−𝜏
𝑇 𝐴̄𝜏

𝑇 + Δ𝐵𝑠𝑓(𝑒𝑠 + 𝑥̂𝑠)𝑓
𝑇(𝑒𝑠 + 𝑥̂𝑠)Δ𝐵𝑠

𝑇} 

𝔼{𝐾𝑠𝜀𝑠𝑒𝑠−𝜏
𝑇 𝐴̄𝜏

𝑇 + 𝐴̄𝜏𝑒𝑠−𝜏𝜀𝑠
𝑇𝐾𝑠

𝑇} ≤ 𝔼{𝐴̄𝜏𝑒𝑠−𝜏𝑒𝑠−𝜏
𝑇 𝐴̄𝜏

𝑇 + 𝐾𝑠𝜀𝑠𝜀𝑠
𝑇𝐾𝑠

𝑇} 

𝔼{Δ𝐴𝑑𝜏𝑒𝑠−𝜏𝑓
𝑇(𝑒𝑠)𝐵̄

𝑇 + 𝐵̄𝑓̄(𝑒𝑠)𝑒𝑠−𝜏
𝑇 Δ𝐴𝑑𝜏

𝑇 } ≤ 𝔼{𝐵̄𝑓̄(𝑒𝑠)𝑓̄
𝑇(𝑒𝑠)𝐵̄

𝑇 + Δ𝐴𝑑𝜏𝑒𝑠−𝜏𝑒𝑠−𝜏
𝑇 Δ𝐴𝑑𝜏

𝑇 } 

𝔼{Δ𝐴𝑠𝑥̂𝑠−𝜏𝑓̄
𝑇(𝑒𝑠)𝐵̄

𝑇 + 𝐵̄𝑓̄(𝑒𝑠)𝑥̂𝑠−𝜏
𝑇 Δ𝐴𝑠

𝑇} ≤ 𝔼{𝐵̄𝑓̄(𝑒𝑠)𝑓̄
𝑇(𝑒𝑠)𝐵̄

𝑇 + Δ𝐴𝑠𝑥̂𝑠−𝜏𝑥̂𝑠−𝜏
𝑇 Δ𝐴𝑠

𝑇} 

𝔼{Δ𝐵𝑠𝑓(𝑒𝑠 + 𝑥̂𝑠)𝑓̄
𝑇(𝑒𝑠)𝐵̄

𝑇 + 𝐵̄𝑓̄(𝑒𝑠)𝑓
𝑇(𝑒𝑠 + 𝑥̂𝑠)Δ𝐵𝑠

𝑇} ≤ 𝔼{𝐵̄𝑓̄(𝑒𝑠)𝑓̄
𝑇(𝑒𝑠)𝐵̄

𝑇 + Δ𝐵𝑠𝑓(𝑒𝑠 + 𝑥̂𝑠)𝑓
𝑇(𝑒𝑠 + 𝑥̂𝑠)Δ𝐵𝑠

𝑇} 

𝔼{𝐾𝑠𝜀𝑠𝑓̄
𝑇(𝑒𝑠)𝐵̄

𝑇 + 𝐵̄𝑓̄(𝑒𝑠)𝜀𝑠
𝑇𝐾𝑠

𝑇} ≤ 𝔼{𝐵̄𝑓̄(𝑒𝑠)𝑓̄
𝑇(𝑒𝑠)𝐵̄

𝑇 + 𝐾𝑠𝜀𝑠𝜀𝑠
𝑇𝐾𝑠

𝑇} 

  𝔼{Δ𝐴𝑠𝑥̂𝑠−𝜏𝑒𝑠−𝜏
𝑇 Δ𝐴𝑑𝜏

𝑇 + Δ𝐴𝑑𝜏𝑒𝑠−𝜏𝑥̂𝑠−𝜏
𝑇 Δ𝐴𝑠

𝑇} ≤ 𝔼{Δ𝐴𝑑𝜏𝑒𝑠−𝜏𝑒𝑠−𝜏
𝑇 Δ𝐴𝑑𝜏

𝑇 + Δ𝐴𝑠𝑥̂𝑠−𝜏𝑥̂𝑠−𝜏
𝑇 Δ𝐴𝑠

𝑇} 
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    𝔼{Δ𝐵𝑠𝑓(𝑒𝑠 + 𝑥̂𝑠)𝑒𝑠−𝜏
𝑇 Δ𝐴𝑑𝜏

𝑇 + Δ𝐵𝑠𝑓(𝑒𝑠 + 𝑥̂𝑠)𝑒𝑠−𝜏
𝑇 Δ𝐴𝑑𝜏

𝑇 } ≤ 𝔼{Δ𝐴𝑑𝜏𝑒𝑠−𝜏𝑒𝑠−𝜏
𝑇 Δ𝐴𝑑𝜏

𝑇 + Δ𝐵𝑠𝑓(𝑒𝑠 + 𝑥̂𝑠)𝑓
𝑇(𝑒𝑠 + 𝑥̂𝑠)Δ𝐵𝑠

𝑇} 

𝔼{𝐾𝑠𝜀𝑠𝑒𝑠−𝜏
𝑇 Δ𝐴𝑑𝜏

𝑇 + Δ𝐴𝑑𝜏𝑒𝑠−𝜏𝜀𝑠
𝑇𝐾𝑠

𝑇} ≤ 𝔼{Δ𝐴𝑑𝜏𝑒𝑠−𝜏𝑒𝑠−𝜏
𝑇 Δ𝐴𝑑𝜏

𝑇 + 𝐾𝑠𝜀𝑠𝜀𝑠
𝑇𝐾𝑠

𝑇} 

𝔼{Δ𝐵𝑠𝑓(𝑒𝑠 + 𝑥̂𝑠)𝑥̂𝑠−𝜏
𝑇 Δ𝐴𝑑𝜏

𝑇 + Δ𝐴𝑑𝜏𝑥̂𝑠−𝜏𝑓
𝑇(𝑒𝑠 + 𝑥̂𝑠)Δ𝐵𝑠

𝑇} ≤ 𝔼{Δ𝐴𝑑𝜏𝑥̂𝑠−𝜏𝑥̂𝑠−𝜏
𝑇 Δ𝐴𝑑𝜏

𝑇 + Δ𝐵𝑠𝑓(𝑒𝑠 + 𝑥̂𝑠)𝑓
𝑇(𝑒𝑠 + 𝑥̂𝑠)Δ𝐵𝑠

𝑇} 

𝔼{𝐾𝑠𝜀𝑠𝑥̂𝑠−𝜏
𝑇 Δ𝐴𝑑𝜏

𝑇 + Δ𝐴𝑑𝜏𝑥̂𝑠−𝜏𝜀𝑠
𝑇𝐾𝑠

𝑇} ≤ 𝔼{Δ𝐴𝑑𝜏𝑥̂𝑠−𝜏𝑥̂𝑠−𝜏
𝑇 Δ𝐴𝑑𝜏

𝑇 + 𝐾𝑠𝜀𝑠𝜀𝑠
𝑇𝐾𝑠

𝑇} 

𝔼{𝐾𝑠𝜀𝑠𝑓
𝑇(𝑒𝑠 + 𝑥̂𝑠)Δ𝐵𝑠

𝑇 + Δ𝐵𝑠𝑓(𝑒𝑠 + 𝑥̂𝑠)𝜀𝑠
𝑇𝐾𝑠

𝑇} ≤ 𝔼{Δ𝐵𝑠𝑓(𝑒𝑠 + 𝑥̂𝑠)𝑓
𝑇(𝑒𝑠 + 𝑥̂𝑠)Δ𝐵𝑠

𝑇 + 𝐾𝑠𝜀𝑠𝜀𝑠
𝑇𝐾𝑠

𝑇} 

𝔼{−𝐾𝑠𝜀𝑠𝑣2𝑠
𝑇 𝐸𝑠

𝑇𝐾𝑠
𝑇 − 𝐾𝑠𝐸𝑠𝑣2𝑠𝜀𝑠

𝑇𝐾𝑠
𝑇} ≤ 𝔼{𝐾𝑠𝐸𝑠𝑣2𝑠𝑣2𝑠

𝑇 𝐸𝑠
𝑇𝐾𝑠

𝑇 + 𝐾𝑠𝜀𝑠𝜀𝑠
𝑇𝐾𝑠

𝑇}.    

Through collation and integration, the following results are obtained: 

𝑋𝑠+1 ≤ 𝔼{10𝐴̄𝑒𝑠𝑒𝑠
𝑇𝐴̄𝑇 + 10𝐾𝑠𝐷𝑠𝑒𝑠𝑒𝑠

𝑇𝐷𝑠
𝑇𝐾𝑠

𝑇 + 10Δ𝐴𝑠𝑒𝑠𝑒𝑠
𝑇Δ𝐴𝑠

𝑇 + 10Δ𝐴𝑠𝑥̂𝑠𝑥̂𝑠
𝑇Δ𝐴𝑠

𝑇 + 10𝐴̄𝜏𝑒𝑠−𝜏𝑒𝑠−𝜏
𝑇 𝐴̄𝜏

𝑇 

            +10𝐵̄𝑓̄(𝑒𝑠)𝑓
𝑇(𝑒𝑠)𝐵̄

𝑇 + 10Δ𝐴𝑑𝜏𝑒𝑠−𝜏𝑒𝑠−𝜏
𝑇 Δ𝐴𝑑𝜏

𝑇 + 10Δ𝐴𝑑𝜏𝑥̂𝑠−𝜏𝑥̂𝑠−𝜏
𝑇 Δ𝐴𝑑𝜏

𝑇 + 10Δ𝐵𝑠𝑓(𝑒𝑠 + 𝑥̂𝑠) 

            × 𝑓𝑇(𝑒𝑠 + 𝑥̂𝑠)Δ𝐵𝑠
𝑇+11𝐾𝑠𝜀𝑠𝜀𝑠

𝑇𝐾𝑠
𝑇 + 𝐶𝑠𝑣1𝑠𝑣1𝑠

𝑇 𝐶𝑠
𝑇 + 2𝐾𝑠𝐸𝑠𝑣2𝑠𝑣2𝑠

𝑇 𝐸𝑠
𝑇𝐾𝑠

𝑇} 

It follows from Lemma 2 that 

𝔼{𝑓̄(𝑒𝑠)𝑓̄
𝑇(𝑒𝑠)} ≤ 𝔼 {𝑡𝑟 (𝑓(𝑒𝑠)𝑓̄

𝑇(𝑒𝑠))} 𝐼 ≤ 𝔛𝔼{𝑒𝑠
𝑇𝑒𝑠}𝐼 

𝔼{𝑓(𝑒𝑠 + 𝑥̂𝑠)𝑓
𝑇(𝑒𝑠 + 𝑥̂𝑠)} ≤ 𝔼{𝑡𝑟(𝑓(𝑒𝑠 + 𝑥̂𝑠)𝑓

𝑇(𝑒𝑠 + 𝑥̂𝑠))}𝐼                         

           ≤ 2𝔛𝔼{𝑒𝑠
𝑇𝑒𝑠}𝐼 + 2𝔛𝔼{𝑥̂𝑠

𝑇𝑥̂𝑠}𝐼 

where 𝔛 is defined in (27). Furthermore, it is obvious to obtain 

𝑋𝑠+1 ≤ 𝔼{10𝐴̄𝑒𝑠𝑒𝑠
𝑇𝐴̄𝑇 + 10𝐾𝑠𝐷𝑠𝑒𝑠𝑒𝑠

𝑇𝐷𝑠
𝑇𝐾𝑠

𝑇 + 10Δ𝐴𝑠𝑒𝑠𝑒𝑠
𝑇Δ𝐴𝑠

𝑇 + 10Δ𝐴𝑠𝑥̂𝑠𝑥̂𝑠
𝑇Δ𝐴𝑠

𝑇 + 10𝐴̄𝜏𝑒𝑠−𝜏𝑒𝑠−𝜏
𝑇 𝐴̄𝜏

𝑇 

             +10𝔛𝐵̄𝑒𝑠
𝑇𝑒𝑠𝐵̄

𝑇 + 10Δ𝐴𝑑𝜏𝑒𝑠−𝜏𝑒𝑠−𝜏
𝑇 Δ𝐴𝑑𝜏

𝑇 + 10Δ𝐴𝑑𝜏𝑥̂𝑠−𝜏𝑥̂𝑠−𝜏
𝑇 Δ𝐴𝑑𝜏

𝑇 + 20𝔛Δ𝐵𝑠𝑒𝑠
𝑇𝑒𝑠Δ𝐵𝑠

𝑇 + 20𝔛Δ𝐵𝑠 

× 𝑥̂𝑠
𝑇𝑥̂𝑠Δ𝐵𝑠

𝑇+11𝐾𝑠𝜀𝑠𝜀𝑠
𝑇𝐾𝑠

𝑇 + 𝐶𝑠𝑣1𝑠𝑣1𝑠
𝑇 𝐶𝑠

𝑇 + 2𝐾𝑠𝐸𝑠𝑣2𝑠𝑣2𝑠
𝑇 𝐸𝑠

𝑇𝐾𝑠
𝑇}         (29) 

Noting the fact 

𝜀𝑠𝜀𝑠
𝑇 ≤ 𝜀𝑠

𝑇𝜀𝑠𝐼 

we have 

𝔼{𝜀𝑠
𝑇𝜀𝑠}𝐼 ≤ 𝜛𝐼 

where 𝜛 is defined in (27). According to the property of the trace, it is straightforward to get 

𝔼{𝑒𝑠
𝑇𝑒𝑠} = 𝔼{𝑡𝑟(𝑒𝑠𝑒𝑠

𝑇)} = tr(𝑋𝑠) 

 𝑥̂𝑠
𝑇𝑥̂𝑠 = tr(𝑥̂𝑠𝑥̂𝑠

𝑇)          (30) 

Combining (29) with (30) results in 

𝑋𝑠+1 ≤ 10𝐴̄𝑋𝑠𝐴̄
𝑇 + 10𝐾𝑠𝐷𝑠𝑋𝑠𝐷𝑠

𝑇𝐾𝑠
𝑇 + 10Δ𝐴𝑠𝑋𝑠Δ𝐴𝑠

𝑇 + 10Δ𝐴𝑠𝑥̂𝑠𝑥̂𝑠
𝑇Δ𝐴𝑠

𝑇 + 10𝐴̄𝜏𝑋𝑠−𝜏𝐴̄𝜏
𝑇 

            +10𝔛tr(𝑋𝑠)𝐵̄𝐵̄
𝑇 + 10Δ𝐴𝑑𝜏𝑋𝑠−𝜏Δ𝐴𝑑𝜏

𝑇 + 10Δ𝐴𝑑𝜏𝑥̂𝑠−𝜏𝑥̂𝑠−𝜏
𝑇 Δ𝐴𝑑𝜏

𝑇 + 20𝔛tr(𝑋𝑠)Δ𝐵𝑠Δ𝐵𝑠
𝑇  

            +20𝔛tr(𝑥̂𝑠𝑥̂𝑠
𝑇)Δ𝐵𝑠Δ𝐵𝑠

𝑇 + 11𝜛𝐾𝑠𝐾𝑠
𝑇 + 𝐶𝑠𝒱1𝑠𝐶𝑠

𝑇 + 2𝐾𝑠𝐸𝑠𝒱2𝑠𝐸𝑠
𝑇𝐾𝑠

𝑇 

          = 𝔗(𝑋𝑠) 

Noticing 𝒢0 ≥ 𝑋0 and letting 𝒢𝑠 ≥ 𝑋𝑠, one has 

 𝔗(𝒢𝑠) ≥ 𝔗(𝑋𝑠) ≥ 𝑋𝑠+1  (31) 

From (26) and (31), we obtain 
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 𝒢𝑠+1 ≥ 𝔗(𝒢𝑠) ≥ 𝔗(𝑋𝑠) ≥ 𝑋𝑠+1  (32) 

Therefore, the proof is now complete. 

Based on the analysis of Theorem 1 and Theorem 2 mentioned above, the following sufficient criteria are 

obtained, which can guarantee the two desired constraints. 

Theorem 3: Consider the MNNs with variance constraint (1). Assume that the TVSE gain matrix 𝐾𝑠 in (7) is given. 

For given scalar 𝛾 > 0, PDRVMs 𝒰𝜑, 𝒰𝜙 and 𝒰𝜓, under the initial conditions 𝒢0 = 𝑋0, ℛ0 ≤ 𝛾
2𝒰𝜙 and 𝔔𝑙 ≤

𝛾2𝒰𝜓(𝑙 = −𝜏,−𝜏 + 1,… ,−1), if there exist PDRVMs {ℛ𝑠}1≤𝑠≤𝑁+1, {𝒢𝑠}1≤𝑠≤𝑁+1 and {𝔔𝑠}0≤𝑠≤𝑁 satisfying the inequalities 

 

[
 
 
 
 
 
 
 
 
Σ11 Σ12 0 Σ14 Σ15 0 0 0 0
∗ Σ22 0 Σ24 0 Σ26 Σ27 Σ28 0
∗ ∗ Σ33 0 0 0 0 Σ38 0
∗ ∗ ∗ Σ44 0 0 0 0 Σ49
∗ ∗ ∗ ∗ Σ55 0 0 0 0
∗ ∗ ∗ ∗ ∗ Σ66 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ Σ77 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ Σ88 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Σ99]

 
 
 
 
 
 
 
 

< 0  (33) 

 [

Υ11 Υ12 Υ13 Υ14
∗ Υ22 0 0
∗ ∗ Υ33 0
∗ ∗ ∗ Υ44

] < 0  (34) 

where 

Σ11 = −ℛ𝑠 +𝔔𝑠 − 𝑅1𝑠 +𝑀𝑠
𝑇𝑀𝑠, Σ12 = [−𝑅2𝑠 −𝑅3𝑠

𝑇 ] 

Σ14 = [0 0 𝐴̄𝑇], Σ15 = [3𝐴̄𝑇 √11𝐷𝑠
𝑇𝐾𝑠

𝑇 √11Δ𝐴𝑠
𝑇] 

Σ22 = [
−𝐼 𝑓(𝑥̂𝑠)

∗ −𝑓𝑇(𝑥̂𝑠)𝑓(𝑥̂𝑠) +
𝜎

𝜃
− 𝜅𝑠𝜎

] , Σ24 = [
0 0 𝐵̄𝑇

0 0 0
] 

Σ26 = [
√11Δ𝐵𝑠

𝑇 3𝐵̄𝑇

0 0
] , Σ27 = [

0 0

√11𝑥̂𝑠
𝑇Δ𝐴𝑠

𝑇 √11𝑓𝑇(𝑥̂𝑠)𝐵̄
𝑇] 

Σ28 = [
0 0 0 0

√11𝑥̂𝑠−𝜏
𝑇 Δ𝐴𝑑𝜏

𝑇 0 0 0
] , Σ33 = diag {−𝔔𝑠−𝜏, − (

1

𝜃
− 𝜅𝑠) 𝐼,

𝜆 − 1 + 𝜅𝑠
𝜃

𝐼} 

Σ38 = [
0 √11𝐴̄𝜏

𝑇 √11Δ𝐴𝑑𝜏
𝑇 0

0 0 0 2√3𝐾𝑠
𝑇

0 0 0 0

] , Σ49 = [
𝐶𝑠
𝑇 0

0 √2𝐸𝑠
𝑇𝐾𝑠

𝑇

0 0

] 

Σ44 = diag{−𝛾2𝒰𝜑 , −𝛾
2𝒰𝜑 , −ℛ𝑠+1

−1 }, Σ55 = diag{−ℛ𝑠+1
−1 , −ℛ𝑠+1

−1 , −ℛ𝑠+1
−1 } 

Σ66 = diag{−ℛ𝑠+1
−1 , −ℛ𝑠+1

−1 }, Σ77 = diag{−ℛ𝑠+1
−1 , −ℛ𝑠+1

−1 } 

Σ88 = diag{−ℛ𝑠+1
−1 , −ℛ𝑠+1

−1 , −ℛ𝑠+1
−1 , −ℛ𝑠+1

−1 }, Σ99 = diag{−ℛ𝑠+1
−1 , −ℛ𝑠+1

−1 } 

Υ11 = −𝒢𝑠+1 + 10𝐴̄𝒢𝑠𝐴̄
𝑇 + 10𝐴̄𝜏𝒢𝑠−𝜏𝐴̄𝜏

𝑇 + 10𝔛tr(𝒢𝑠)𝐵̄𝐵̄
𝑇 + 𝐶𝑠𝒱1𝑠𝐶𝑠

𝑇 

Υ12 = [√10𝐾𝑠𝐷𝑠𝒢𝑠 √10Δ𝐴𝑠𝒢𝑠 √10Δ𝐴𝑠𝑥̂𝑠] 

Υ13 = [√11𝜛𝐾𝑠 √10Δ𝐴𝑑𝜏𝒢𝑠−𝜏 √10Δ𝐴𝑑𝜏𝑥̂𝑠−𝜏] 

Υ14 = [2√5𝔛tr(𝒢𝑠)Δ𝐵𝑠 2√5𝔛tr(𝑥̂𝑠𝑥̂𝑠
𝑇)Δ𝐵𝑠 √2𝐾𝑠𝐸𝑠𝒱2𝑠] 

Υ22 = diag{−𝒢𝑠 , −𝒢𝑠, −𝐼}, Υ33 = diag{−𝐼, −𝒢𝑠−𝜏, −𝐼} 

Υ44 = diag{−tr(𝒢𝑠)𝐼, −tr(𝑥̂𝑠𝑥̂𝑠
𝑇)𝐼, −𝒱2𝑠} 

then two desirable constraints can be satisfied simultaneously. 
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Proof: In terms of Theorem 1 and Theorem 2, the H∞ performance constraint in (10) obeys 𝐽1 > 0 and the EVB 

obeys 𝐽2 ≔ 𝑋𝑠 ≤ 𝔜𝑠, that is, the inequality (33) implies (16) and (34) implies (26) under the initial conditions, and we 

obtain sufficient conditions to ensure the desired H∞ performance constraint and the EVB, which completes the 

proof of Theorem 3. 

In the end, the following theorem is obtained to provide a solvable algorithm for the TVSE gain. 

Theorem 4: Consider the MNNs (1) under variance constraint. For given the attenuation level 𝛾 > 0, the PDRVMs 

𝒰𝜙, 𝒰𝜑 and 𝒰𝜓, a series of matrices {𝔜𝑠}0≤𝑠≤𝑁+1, under the initial condition 

 {

ℛ0 ≤ 𝛾
2𝒰𝜙

𝔔𝑙 ≤ 𝛾
2𝒰𝜓,  (𝑙 = −𝜏,−𝜏 + 1,… ,−1)

𝔼{𝑒0𝑒0
𝑇} = 𝒢0 ≤ 𝔜0

  (35) 

if there exist PDRVMs {ℛ𝑠}1≤𝑠≤𝑁+1, {𝒢𝑠}1≤𝑠≤𝑁+1 and {𝔔𝑠}0≤𝑠≤𝑁, the estimator gain matrix {𝐾𝑠}0≤𝑠≤𝑁 and scalars ϵ𝑖,𝑠 >

0(𝑖 = 1,2, … ,8) obeying the inequalities 

 [

Ω11 Ω12 Ω13
∗ Ω22 0
∗ ∗ Ω33

] < 0  (36) 

 

[
 
 
 
 
 
 
 
Ψ11 Ψ12 Ψ13 Ψ14 0 0 0

∗ Υ22 0 0 𝒲𝑠
𝑇 0 0

∗ ∗ Υ33 0 0 𝒳𝑠
𝑇 0

∗ ∗ ∗ Υ44 0 0 𝒴𝑠
𝑇

∗ ∗ ∗ ∗ −ϵ6,𝑠𝐼 0 0

∗ ∗ ∗ ∗ ∗ −ϵ7,𝑠𝐼 0

∗ ∗ ∗ ∗ ∗ ∗ −ϵ8,𝑠𝐼]
 
 
 
 
 
 
 

< 0  (37) 

 𝒢𝑠+1 − 𝔜𝑠+1 ≤ 0  (38) 

with the following updating rule 

 ℛ𝑠 = ℛ𝑠
−1  (39) 

where 

Ω11 =

[
 
 
 
 
 
 
 
 
Ξ11 Σ12 0 Σ14 Ξ15 0 0 0 0
∗ Σ22 0 Σ24 0 Ξ26 Ξ27 0 0
∗ ∗ Σ33 0 0 0 0 Ξ38 0
∗ ∗ ∗ Ξ44 0 0 0 0 Σ49
∗ ∗ ∗ ∗ Ξ55 0 0 0 0
∗ ∗ ∗ ∗ ∗ Ξ66 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ Ξ77 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ Ξ88 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Ξ99]

 
 
 
 
 
 
 
 

 

Ω12 =

[
 
 
 
 
 
 
 
 
0 0 0 0 0
0 ϵ2,𝑠𝒩2 0 ϵ3,𝑠𝒩3 0

0 0 0 0 0
0 0 0 0 0
ℋ1
𝑇 0 0 0 0

0 0 ℋ2
𝑇 0 0

0 0 0 0 ℋ3
𝑇

0 0 0 0 0
0 0 0 0 0 ]

 
 
 
 
 
 
 
 

, Ω13 =

[
 
 
 
 
 
 
 
 
0 0 0 0

ϵ4,𝑠𝒩4 0 0 0

0 0 ϵ5,𝑠𝒩5 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 ℋ4

𝑇 0 ℋ5
𝑇

0 0 0 0 ]
 
 
 
 
 
 
 
 

 



Event-Triggered H∞ Estimation for Memristive Neural Networks Gao et al. 

 

159 

Ω22 = diag{−ϵ1,𝑠𝐼, −ϵ2,𝑠𝐼, −ϵ2,𝑠𝐼, −ϵ3,𝑠𝐼, −ϵ3,𝑠𝐼}, Ω33 = diag{−ϵ4,𝑠𝐼, −ϵ4,𝑠𝐼, −ϵ5,𝑠𝐼, −ϵ5,𝑠𝐼} 

Ξ11 = −ℛ𝑠 +𝔔𝑠 − 𝑅1𝑠 +𝑀𝑠
𝑇𝑀𝑠 + ϵ1,𝑠𝑁1

𝑇𝑁1, Σ12 = [−𝑅2𝑠 −𝑅3𝑠
𝑇 ] 

Σ14 = [0 0 𝐴̄𝑇], Ξ15 = [3𝐴̄𝑇 √11𝐷𝑠
𝑇𝐾𝑠

𝑇 0] 

Σ24 = [
0 0 𝐵̄𝑇

0 0 0
] , Ξ26 = [

0 3𝐵̄𝑇

0 0
] 

Ξ27 = [
0 0

0 √11𝑓𝑇(𝑥̂𝑠)𝐵̄
𝑇] , Σ22 = [

−𝐼 𝑓(𝑥̂𝑠)

∗ −𝑓𝑇(𝑥̂𝑠)𝑓(𝑥̂𝑠) +
𝜎

𝜃
− 𝜅𝑠𝜎

] 

Σ33 = diag {−𝔔𝑠−𝜏, − (
1

𝜃
− 𝜅𝑠) 𝐼,

𝜆 − 1 + 𝜅𝑠
𝜃

𝐼} 

Ξ38 = [
0 √11𝐴̄𝜏

𝑇 0 0

0 0 0 2√3𝐾𝑠
𝑇

0 0 0 0

] , Σ49 = [
𝐶𝑠
𝑇 0

0 √2𝐸𝑠
𝑇𝐾𝑠

𝑇

0 0

] 

Ξ44 = diag{−𝛾2𝒰𝜑 , −𝛾
2𝒰𝜑 , −ℛ𝑠+1}, Ξ55 = diag{−ℛ𝑠+1, −ℛ𝑠+1, −ℛ𝑠+1} 

Ξ66 = diag{−ℛ𝑠+1, −ℛ𝑠+1}, Ξ77 = diag{−ℛ𝑠+1, −ℛ𝑠+1} 

Ξ88 = diag{−ℛ𝑠+1, −ℛ𝑠+1, −ℛ𝑠+1, −ℛ𝑠+1}, Ξ99 = diag{−ℛ𝑠+1, −ℛ𝑠+1} 

Ψ11 = −𝒢𝑠+1 + 10𝐴̄𝒢𝑠𝐴̄
𝑇 + 10𝐴̄𝜏𝒢𝑠−𝜏𝐴̄𝜏

𝑇 + 10𝔛tr(𝒢𝑠)𝐵̄𝐵̄
𝑇 + 𝐶𝑠𝒱1𝑠𝐶𝑠

𝑇 + (ϵ6,𝑠 + ϵ7,𝑠 + ϵ8,𝑠)𝐻𝐻
𝑇  

Ψ12 = [√10𝐾𝑠𝐷𝑠𝒢𝑠 0 0],Ψ13 = [√11𝜛𝐾𝑠 0 0],Ψ14 = [0 0 √2𝐾𝑠𝐸𝑠𝒱2𝑠] 

Υ22 = diag{−𝒢𝑠 , −𝒢𝑠, −𝐼}, Υ33 = diag{−𝐼, −𝒢𝑠−𝜏 , −𝐼}, Υ44 = diag{−tr(𝒢𝑠)𝐼, −tr(𝑥̂𝑠𝑥̂𝑠
𝑇)𝐼, −𝒱2𝑠} 

ℋ1 = [0 0 √11𝐻𝑇],𝒩2
𝑇 = [𝑁3 0],ℋ2 = [√11𝐻𝑇 0] 

𝒩3
𝑇 = [0 𝑁1𝑥̂𝑠],ℋ3 = [√11𝐻𝑇 0],𝒩4

𝑇 = [0 𝑁2𝑥̂𝑠−𝜏] 

ℋ4 = [√11𝐻𝑇 0 0 0],𝒩5
𝑇 = [𝑁2 0 0],ℋ5 = [0 0 √11𝐻𝑇 0] 

𝒲𝑠 = [0 √10𝑁1𝒢𝑠 √10𝑁1𝑥̂𝑠], 𝒳𝑠 = [0 √10𝑁2𝒢𝑠−𝜏 √10𝑁2𝑥̂𝑠−𝜏] 

𝒴𝑠 = [2√5𝔛tr(𝒢𝑠)𝑁3 2√5𝔛tr(𝑥̂𝑠𝑥̂𝑠
𝑇)𝑁3 0] 

then the TVSE gain can be obtained by solving the RLMIs (36)-(38). 

Proof: Firstly, we handle the parameter uncertainty, (33) can be rewritten as 

[
 
 
 
 
 
 
 
 
Σ11 Σ12 0 Σ14 Ξ15 0 0 0 0
∗ Σ22 0 Σ24 0 Ξ26 Ξ27 Ξ28 0
∗ ∗ Σ33 0 0 0 0 Ξ38 0
∗ ∗ ∗ Σ44 0 0 0 0 Σ49
∗ ∗ ∗ ∗ Σ55 0 0 0 0
∗ ∗ ∗ ∗ ∗ Σ66 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ Σ77 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ Σ88 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Σ99]

 
 
 
 
 
 
 
 

+ 𝑁̄𝑠𝐹1,𝑠
𝑇 𝐻̄𝑠 + 𝐻̄𝑠

𝑇𝐹1,𝑠𝑁̄𝑠
𝑇 + 𝑁̂𝑠𝐹3,𝑠

𝑇 𝐻̂𝑠 + 𝐻̂𝑠
𝑇𝐹3,𝑠𝑁̂𝑠

𝑇 + 𝑁𝑠𝐹1,𝑠
𝑇 𝐻𝑠 

                                                                                                 +𝐻𝑠
𝑇𝐹1,𝑠𝑁𝑠

𝑇 + 𝑁⃗⃗ 𝑠𝐹2,𝑠
𝑇 𝐻⃗⃗ 𝑠 + 𝐻⃗⃗ 𝑠

𝑇𝐹2,𝑠𝑁⃗⃗ 𝑠
𝑇 + 𝑁̆𝑠𝐹2,𝑠

𝑇 𝐻̆𝑠 + 𝐻̆𝑠
𝑇𝐹2,𝑠𝑁̆𝑠

𝑇 < 0 

where 

𝑁̄𝑠
𝑇 = [𝑁1 0 0 0 0 0 0 0 0], 𝐻̄𝑠 = [0 0 0 0 ℋ1 0 0 0 0] 

𝑁̂𝑠
𝑇 = [0 𝒩2

𝑇 0 0 0 0 0 0 0], 𝐻̂𝑠 = [0 0 0 0 0 ℋ2 0 0 0] 

𝑁𝑠
𝑇 = [0 𝒩3

𝑇 0 0 0 0 0 0 0], 𝐻𝑠 = [0 0 0 0 0 0 ℋ3 0 0] 

𝑁⃗⃗ 𝑠
𝑇 = [0 𝒩4

𝑇 0 0 0 0 0 0 0], 𝐻⃗⃗ 𝑠 = [0 0 0 0 0 0 0 ℋ4 0] 
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𝑁̆𝑠
𝑇 = [0 0 𝒩5

𝑇 0 0 0 0 0 0], 𝐻̆𝑠 = [0 0 0 0 0 0 0 ℋ5 0] 

Furthermore, it is not difficult to derive that 

[
 
 
 
 
 
 
 
 
Σ11 Σ12 0 Σ14 Ξ15 0 0 0 0
∗ Σ22 0 Σ24 0 Ξ26 Ξ27 Ξ28 0
∗ ∗ Σ33 0 0 0 0 Ξ38 0
∗ ∗ ∗ Σ44 0 0 0 0 Σ49
∗ ∗ ∗ ∗ Σ55 0 0 0 0
∗ ∗ ∗ ∗ ∗ Σ66 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ Σ77 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ Σ88 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Σ99]

 
 
 
 
 
 
 
 

+ ϵ1,𝑠𝑁̄𝑠𝑁̄𝑠
𝑇 + ϵ1,𝑠

−1𝐻̄𝑠
𝑇𝐻̄𝑠 + ϵ2,𝑠𝑁̂𝑠𝑁̂𝑠

𝑇 + ϵ2,𝑠
−1𝐻̂𝑠

𝑇𝐻̂𝑠 + ϵ3,𝑠𝑁𝑠𝑁𝑠
𝑇 + ϵ3,𝑠

−1𝐻𝑠
𝑇𝐻𝑠 

                                                                                                   +ϵ4,𝑠𝑁⃗⃗ 𝑠𝑁⃗⃗ 𝑠
𝑇 + ϵ4,𝑠

−1𝐻⃗⃗ 𝑠
𝑇𝐻⃗⃗ 𝑠 + ϵ5,𝑠𝑁̆𝑠𝑁̆𝑠

𝑇 + ϵ5,𝑠
−1𝐻̆𝑠

𝑇𝐻̆𝑠 < 0 

Similarly, based on (34), we can get 

[

Υ11 Ψ12 Ψ13 Ψ14
∗ Υ22 0 0
∗ ∗ Υ33 0
∗ ∗ ∗ Υ44

] + 𝔑𝑠𝐹1,𝑠ℌ1,𝑠 + ℌ1,𝑠
𝑇 𝐹1,𝑠

𝑇 𝔑𝑠
𝑇 +𝔑𝑠𝐹2,𝑠ℌ2,𝑠 

                                              +ℌ2,𝑠
𝑇 𝐹2,𝑠

𝑇 𝔑𝑠
𝑇 + 𝔑𝑠𝐹3,𝑠ℌ3,𝑠 + ℌ3,𝑠

𝑇 𝐹3,𝑠
𝑇 𝔑𝑠

𝑇 < 0 

where 

  𝔑𝑠
𝑇 = [𝐻𝑇 0 0 0] 

ℌ1,𝑠 = [0 𝒲𝑠 0 0] 

ℌ2,𝑠 = [0 0 𝒳𝑠 0] 

ℌ3,𝑠 = [0 0 0 𝒴𝑠] 

Furthermore, we obtain 

[

Υ11 Ψ12 Ψ13 Ψ14
∗ Υ22 0 0
∗ ∗ Υ33 0
∗ ∗ ∗ Υ44

] + ϵ6,𝑠𝔑𝑠𝔑𝑠
𝑇 + ϵ6,𝑠

−1ℌ1,𝑠
𝑇 ℌ1,𝑠 + ϵ7,𝑠𝔑𝑠𝔑𝑠

𝑇 + ϵ7,𝑠
−1ℌ2,𝑠

𝑇 ℌ2,𝑠 + ϵ8,𝑠𝔑𝑠𝔑𝑠
𝑇 + ϵ8,𝑠

−1ℌ3,𝑠
𝑇 ℌ3,𝑠 < 0 

Thus, we can conclude that two desired requirements can be achieved simultaneously. 

Remark 2: Contrary to existing approaches, the key distinctions of the proposed H∞ SE scheme are listed as 

follows: (1) the developed H∞ SE method aims to ensure that the error covariance is bounded, which can be adapted 

to fulfill the admissibility of the presented H∞ SE strategy to some extent; and (2) the disturbance attenuation level 

can be achieved, where the sufficient condition is derived to ensure the desired H∞ performance constraint within 

the time-varying framework. Consequently, the proposed H∞ SE scheme obeys both the predefined H∞ performance 

requirement and the EVB, which might provide more application domains. 

Remark 3: Inequalities (33) and (34) in Theorem 3 are mainly derived from the results of Theorem 1 and Theorem 

2 via the Schur complement lemma. The reason lies in that we aim to solve the gain matrices of the finite-horizon 

estimator, thus it is necessary to handle the nonlinear terms, which also requires using the Schur complement 

lemma to convert the recursive matrix inequalities into symmetric block matrix inequalities. Inequalities (36) and 

(38) in Theorem 4 are obtained by addressing the uncertainties in the two matrix inequalities of Theorem 3 through 

the S-procedure and expressing ℛ𝑠
−1 (the inverse of ℛ𝑠) using updated matrices, and the proof section of Theorem 

4 focuses on handling these uncertainties. 
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4. A Simulation Example 

In this section, the main purpose is to demonstrate the effectiveness of newly proposed H∞ SE method under 

variance constraint. 

For the MNNs (1), the related parameters are given as follows: 

             𝑎1(𝑥1,𝑠) = {
−0.66, |𝑥1,𝑠| > 1

0.22, |𝑥1,𝑠| ≤ 1
, 𝑎2(𝑥2,𝑠) = {

−0.45, |𝑥2,𝑠| > 1

−0.15, |𝑥2,𝑠| ≤ 1
, 𝑎11,𝜏(𝑥1,𝑠) = {

−0.53, |𝑥1,𝑠| > 1

0.29, |𝑥1,𝑠| ≤ 1
 

𝑎12,𝜏(𝑥1,𝑠) = {
0.31, |𝑥1,𝑠| > 1

0.11, |𝑥1,𝑠| ≤ 1
, 𝑎21,𝜏(𝑥2,𝑠) = {

−0.43, |𝑥2,𝑠| > 1

0.21, |𝑥2,𝑠| ≤ 1
, 𝑎22,𝜏(𝑥2,𝑠) = {

−0.54, |𝑥2,𝑠| > 1

0.32, |𝑥2,𝑠| ≤ 1
   

   𝑏11(𝑥1,𝑠) = {
−0.54, |𝑥1,𝑠| > 1

0.12, |𝑥1,𝑠| ≤ 1
, 𝑏12(𝑥1,𝑠) = {

0.41, |𝑥1,𝑠| > 1

−0.17, |𝑥1,𝑠| ≤ 1
, 𝑏21(𝑥2,𝑠) = {

−0.33, |𝑥2,𝑠| > 1

0.11, |𝑥2,𝑠| ≤ 1
 

   𝑏22(𝑥2,𝑠) = {
−0.21, |𝑥2,𝑠| > 1

−0.23, |𝑥2,𝑠| ≤ 1
, 𝐶𝑠 = [−0.31 −0.15 𝑠𝑖𝑛( 2𝑠)]𝑇 ,   𝐸𝑠 = [−0.22 −0.15 𝑠𝑖𝑛( 2𝑠)]𝑇 

                𝐷𝑠 = [
0.11 𝑠𝑖𝑛( 2𝑠) −0.18

0.21 −0.21 𝑠𝑖𝑛( 2𝑠)
] ,𝑀𝑠 = [−0.03 −0.21 𝑠𝑖𝑛( 3𝑠)] 

                  𝜌 = 0.7,   𝜏 = 2,   𝜎 = 0.7,   𝜆 = 1.8 

It is straightforward to derive that 

  𝐻 = [
1 1 0 0
0 0 1 1

] ,  𝑁1 = [

0.44 0
0 1
1 0
0 0.15

] 

𝑁2 = [

0.41 0
0 0.1
0.32 0
0 0.43

] ,  𝑁3 = [

0.33 0
0 0.29
0.22 0
0 0.01

] 

Additionally, choose the activation function as follows: 

𝑓(𝑥𝑠) = [
0.48𝑥1,𝑠 + tanh( 0.08𝑥1,𝑠) + 0.16𝑥2,𝑠
0.37𝑥1,𝑠 + 0.3𝑥2,𝑠 + tanh( 0.06𝑥2,𝑠)

] 

where the state variable is represented as 𝑥𝑠 = [𝑥1,𝑠 𝑥2,𝑠]𝑇, the mean of the initial value is 𝜙0 = [2.4 0.7]𝑇, the initial 

value is 𝑥̂0 = [−0.2 0.5]𝑇 and initial values of time-delay are 𝜙−1 = [−1 2]𝑇, 𝜙−2 = [2 −1]𝑇, 𝑥̂−1 = [1 −1]𝑇 and 

𝑥̂−2 = [1 −2]𝑇. Set the weighted matrices 𝒰𝜑 = 𝐼, 𝒰𝜙 = 0.1𝐼 and 𝒰𝜓 = 𝐼, the correlation matrices of the activation 

function are 𝑼1 = [
0.56 0.37
0.37 0.36

] and 𝑼2 = [
0.48 0.16
0.16 0.3

], the variance upper bounds {𝔜𝑠}0≤𝑠≤𝑁+1 = diag{0.3,0.3}, the 

attenuation level 𝛾 = 0.6, covariances 𝒱1𝑠 = 𝒱2𝑠 = 1 and 𝑁 = 80. For demonstration purposes, two cases are 

considered with different values: Case I: 𝜃 = 0.6; Case II: 𝜃 = 6. Furthermore, according to (36)-(38), the TVSE gain 

matrix 𝐾𝑠 is designed in Table 2 and Table 3. 
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Table 2: TVSE gain matrices (Case I: 𝜽 = 𝟎. 𝟔). 

𝒔 𝑲𝒔 

1 𝐾1 = [
0.2452 −0.2542
0.1132 0.5611

] 

2 𝐾2 = [
0.3462 −0.4526
−0.1355 0.1355

] 

3 𝐾3 = [
0.3511 0.5461
0.1543 0.4514

] 

⋮ ⋮ 

 

Table 3: TVSE gain matrices (Case II: 𝜽 = 𝟔). 

𝒔 𝑲𝒔 

1 𝐾1 = [
−0.4262 0.3562
0.4352 0.2354

] 

2 𝐾2 = [
0.3451 −0.2455
0.3515 0.4351

] 

3 𝐾3 = [
0.3241 −0.4221
0.3452 −0.5426

] 

⋮ ⋮ 

 

In the simulation, the norm sum of the controlled output EEs can be calculated under two cases. From Table 3, 

it is not difficult to conclude that the norm sum of the controlled output EEs in Case I is smaller than that in Case II. 

By comparing two cases, we can conclude that a larger 𝜃 value leads to more updated information, and the 

estimation accuracy is relatively better. In addition, the triggering rate 𝐿𝑠 is defined as the transmission performance 

level by 𝐿𝑠 =
𝒩𝑠

𝑁
, where 𝒩𝑠 stands for the number of actually transmitted data and 𝑁 = 80 depicts the length of finite-

horizon. Furthermore, in order to obtain the relationship between the triggering rate and parameter 𝜃, the triggering 

rate is given in Table 4 with different values of 𝜃. When 𝜃 increases, the trigger rate monotonically increases. 𝜃 is the 

threshold parameter of the DETM, and a larger 𝜃 results in looser triggering conditions, leading to increased 

frequencies of data transmission and computation execution, thereby reducing resource-saving effects. Therefore, 

a larger 𝜃 leads to a higher event-triggering rate and weaker resource-saving performance. 

The sensitivity analysis and parameter tuning rationale are supplemented for parameters 𝜌, 𝜎, 𝜆 and 𝛾 as follows: 

(1) 𝜌 ∈ (0,1) is a parameter for handling the sector-bounded condition of the nonlinear activation function. (2) 𝜎 > 0 

and 𝜆 > 0 are core parameters of the DETM, controlling the triggering threshold and the update rate of the internal 

dynamic variable. (3) 𝛾 > 0 is the H∞ performance index and represents the disturbance attenuation level of the 

system. We solved the RLMIs to obtain the 𝛾 satisfying 𝐽1 < 0. 

Table 4: Comparisons with EEs of controlled output. 

 ∑‖𝒛̃𝒔‖
𝟐

𝑵−𝟏

𝒔=𝟎

 

Case I: 𝜃 = 0.6 3.2423 

Case II: 𝜃 = 6 0.6745 

 

The simulation results are given in Fig. (2-5). Fig. (2) describes the controlled output 𝑧𝑠 and its estimation 𝑧̂𝑠, and 

Fig. (3) depicts the EEs of controlled output𝑧̃𝑠. Fig. (4) and Fig. (5) describe the actual error variance and upper bound 

of error variance 𝑒𝑠 and the upper bound with different values of 𝜃. It is observed that the upper bound of error 

variance decreases monotonically as 𝜃 increases. According to the Table 4 and Fig. (5), we can conclude that the 

presented DETM reduces the communication burden at the cost of sacrificing certain estimation performance of 
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MNNs. According to the above analysis, the simulation results demonstrate the effectiveness of the proposed H∞ SE 

algorithm under DETMs. 

         

Figure 2: The controlled output 𝑧𝑠 along with its estimated value. Figure 3: The EEs of controlled output 𝑧̃𝑠. 

         

Figure 4: The actual error variance and upper bound  Figure 5: Upper bound trajectories for different 𝜃. 

of error variance 𝑒𝑠. 

5. Conclusion 

This paper has tackled the dynamic event-triggered H∞ SE problem for MNNs with time-delay under variance 

constraint. For the purpose of avoiding resource consumption in the communication channel, the DETM has been 

introduced into the sensor-to-estimator. The TVSE has been designed for MNNs with variance constraint and time-

delay, where sufficient conditions have been obtained to guarantee two constraints including the specified H∞ 

performance constraint and the EVB. Especially, a novel dynamic event-triggered H∞ SE method has been proposed 

without using the augmentation algorithm, and the TVSE gain has been given via the RLMIs method and the 

stochastic analysis techniques. Finally, the effectiveness of the presented H∞ SE method has been verified by a 

simulation example. This paper has discussed the dynamic event-triggered H∞ state estimation for MNNs with 

variance constraints and time-delay, but there are still many topics worth studying. For example, other 

communication protocols can be adopted, such as the event-triggering round-robin-like protocol, the FlexRay 

communication protocol and so on, which we will consider in depth in the subsequent study. 
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