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ABSTRACT

In the present-day society, cancer has become a challenge that threatens millions of
human lives and causes many deaths. Throughout this research, we have developed a
mathematical model to describe the radiotherapy treatment. There is a competition
between tumor cells and normal cells; we use Lotka-Volterra dynamics to represent
that biological idea in a mathematical model. In radiotherapy, ionizing particles attack
the DNA of both tumor cells and normal cells. This process occurs in a medium with
oxygenated tissues, and it has a saturation level. Previous researchers have not
considered the saturation effects of radiotherapy in their models; however, our model
incorporates the Michaelis-Menten term to represent these effects, which is the main
novelty in this research with respect to previous works. We assume that other reactions
are occurring according to the Mass Action Law, and also that radiotherapy targets both
tumor cells and normal cells with the same intensity. First, we conduct a stability analysis
of the system and then simulate the system by using time series analysis. We observed
that in most cases, a stable equilibrium point can occur or periodic behavior may
emerge in the population levels. By conducting a local sensitivity analysis, we identified
the most sensitive parameters important in clinical treatments. We then conduct a
bifurcation analysis for the most sensitive parameters, observing critical values for
these parameters that must be maintained within a specific range to achieve an optimal
treatment outcome. Primarily, we investigated the optimal range for the killing rate of
tumor cells and discussed how the half-saturation constant effects therapy. These
results will be crucial for achieving better clinical outcomes in radiotherapy.

©2025 Vithanage et al. Published by Avanti Publishers. This is an open access article licensed under the terms of the Creative Commons Attribution
Non-Commercial License which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly
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1. Introduction

Cancer is one of the most pressing public health challenges we face, accounting for millions of deaths each year.
Treatment strategies like radiotherapy and chemotherapy play an imperative role in combating this disease.
Meanwhile, radiotherapy is based on the use of ionizing radiation, which damages DNA irreparably in malignant
cells, whereas chemotherapy is achieved through cytotoxic agents that target vital processes in growing tumor cells
[1,2]. While effective, such therapies pose their unique challenges, including side effects [3, 4], tumor resistance,
and personalized treatment plans [5].

Mathematical formulations provide a solid foundation for analyzing and improving cancer treatment paradigms.
These types of models provide researchers with the ability to simulate the dynamics of cancer cell growth and
response to therapies, while also offering insights into the interactions between cancer cells, healthy tissue, and
treatment modalities [6]. Mathematical frameworks have been developed to study tumor-immune interactions and
the impact of the tumor microenvironment on therapeutic outcomes, specifically for radiotherapy [7]. These models
enable the evaluation of separate radiation doses and treatment schedules [8].

In chemotherapy, mathematical models based on drug pharmacokinetics and pharmacodynamics have
explained the interactions between chemotherapy agents and tumor development as well as the response of the
immune system [9, 10]. Such models aim to establish an optimal treatment protocol that considers the synergy and
antagonism between the two modalities [11]. When comparing the side effects, chemotherapy has more side effects
than radiotherapy.

This research presents a comprehensive mathematical model that analyzes the interaction between
radiotherapies administered during cancer treatment. This model utilizes all the main parameters, including
cancerous and healthy cell concentrations, competition coefficients, and therapy dosages. It aims to predict tumor
response and guide clinicians in treatment decisions [12]. Given the complexity of tumor-therapy interactions, this
research aims to develop personalized therapy strategies to achieve better clinical outcomes and minimize toxicities
[13, 14]. Previous researchers in radiotherapy have not considered the saturation effects of radiotherapy in their
models; however, our model takes these effects into account.

2. The Model

The Lotka-Volterra model is one of the fundamental models primarily used in mathematical biology [15]. It was
originally developed to model such interactions as predator-prey and competitive species in ecosystems. The
phenomena expressed in coupled differential equations show how two populations affect each other through
competition, predation, or mutualism [16]. The equations for competitive species take into account intrinsic growth
rates, carrying capacities due to environmental factors, and competition coefficients. These parameters are crucial
in illustrating how one population inhibits the growth of the other. This concept has found a wide range of
applications [17], including in cancer modeling, where normal cells and cancer cells represent two competing
populations within a single biological environment [18-20].

We take as our model of competition between normal and cancer cells using the idea of Lotka-Volterra dynamics
with control on the cancer cells of the following system. Let x, (t) be the density of normal cells and let x,(t) be the
density of cancer cells, then our model takes the form

NX1

X; = a1X; — byx{x, —

1 141 14142 k+x,

. n%x2
X, = AyXy — byx{1x, — 01
2 242 24142 k+xz ( )

The first equation states the rate of change in density of normal cells with increasing time due to growth rate.
Healthy cells grow at a rate a, and the competition coefficient of healthy cells is represented by b, [21-23] (Table 1).
In Radiotherapy, particle beams attack the DNA's of both tumor cells and normal cells [24]. Most scientists use mass
action law to interpret the attack particle beams to cells but when the radiotherapy is given there is an oxygenation
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within tissues and these phenomena can enhance the effectiveness of the radiotherapy but this oxygenation
process has a saturation level [24, 25]. To represent this process clearly, here we introduced a new idea that is when

radiotherapy is given it has a saturation level, that part is represented by Michaelis-Menten term % [22, 26].This
1

is the distruction of normal cells due to radio therapy. Here n is the maximum killing rate and k is the half saturation
constant. According to above model the destruction of normal cells due to radiotherapy arrives at a saturation level.
Here we assume radiotherapy effects on normal cells and tumor cells in the same strength. The second equation
states the rate of change of density of cancer cells with time. Cancer cells grow at a rate a,, with the competition
coefficient of tumor cells, is given by b, [9]. The term -=2- [27] represents the effects of radiotherapy on cancer cells,

k+x,
respectively.

Table1: Parameter values and sources for the model.

Parameter Definition Value Ref.
a, Growth rate of healthy cells 0.1-0.5day™* 211
a, Growth rate of cancer cells 0.45-0.5 day™* [21]
by Competition coefficient of healthy cells 0.11-0.5 cells™ day™? 211
b, Competition coefficient of cancer cells 0.05-0.55 cells™t day™* [21]
n Killing rate of tumor cells by radiotherapy 0.2-1.7cell [28]
k Half Saturation constant 0.30-0.75day™* 211

Theorem 1. (i) Nonnegative quadrant of RZis invariant for system (01). (ii) System (01) is bounded above.
3. Stability Analysis of the System

Radio therapy is a novel method that uses to treat for the cancer in the modern medical treatments for tumors.
In this section we are considering the treatments of radiotherapy.

. nx1
X, = a1X; — byx{x, —
1 141 14142 k+xq
. nxz
Xy = UpXy — byXyXy — 1
2 2X2 2X1%2 T (1)

First, we need to consider the existence of the periodic orbits of this subsystem. Then it uses Dulac Criteria [26,
29, 30]. Consider B(xy,x,) = ﬁ and it is continuously differentiable on R3.
142

fi =a;x; — byxyx, — il
1 141 14142 k + X
nNx;
fa = ayx; — byxyx; — k + x,
OBf, 0Bf, 1 1
* 50 =y
dx;  Ox, X, (k + x1)? %1 (k + x,)?
According to Dulac Criteria if% + ?Tﬁ > 0 Vx4, x, in first quadrant. It has positive sign, then there are no positive
1 2

periodic orbits in the first quadrant.
Proposition 1: System (01) hasn't any positive periodic solutions in R2.

We proceed to discuss the existence of positive equilibria for the subsystem (2). From direct calculations we can
obtain 3 equilibrium points rapidly. They are (0,0),(O,ai— k) and (al— k,0). Here we are assigning a condition to
2 1
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make none zero components as positive values otherwise they are not meaningful. We need to set the parameters

as al >k and ai > k. Third equilibrium point is biologically important as normal cell density is becoming zero is an
2 1

unusual phenomenon. Then we are going to consider about the positive equilibrium points by considering the
geometry of non-trivial x; and x, ioclines.

fa)=x =T
by by(k +x,)
n
= = — k
g(x1) = x; 4y — byx,
Here f'(x;) > 0 in R% and lirr(}+ flx) = % — bn—k < 0 and then f intersects x axis at (al — k, 0) and finally f arrives to a steady
X1 1 1 1
level lim f(x;) =% >0.g(0) = al — k and here g'(x;) > 0 in [0, Z—Z) and then lirgll_g(xl) - oalso lim g(x;) - —0 and
X100 1 2 2 xlﬂa xlﬁz—i

a

lim g(x) - —k.g>0in]|0, bz) then g < 0 in (Z—z, o). If these 2 curves intersect, we only consider the first quadrant. Mainly it
2 2

Xq—00
can occur 3 cases for the existence of positive equilibrium points. Consider 3 cases (Fig. (1). If these 2 curves do not intersect there is
not any positive equilibrium point. If these 2 curves touch each other it can occur only one positive equilibrium point. If these 2 curves
intersect it can occur 2 positive equilibrium points. From below diagrams we can observe that how there exist positive equilibrium
points according to the intersection of non-trivial isoclines. Here red color represents g curve and green represent f curve.

y y

Case 1 Case 2 Case 3
Figure 1: Geometrical behavior of non-trivial isoclines in xy — plane.

We have obtained that lim f(x;) =% > 0and g(0) = al — k. Then we can have that, ifal —k> %then there are
1 2 2 1

X100
no any positive equilibrium points for this subsystem. If al —-k< % then it can occur no positive equilibrium points
2 1
or at most 2 positive equilibrium points for this subsystem. Next, we move to consider the stability of all these
equilibrium points.

We are going to use Jacobian to discuss the stability of equilibrium points and their asymptotic dynamics.

k
a1 - b1x2 - (kl]x1)2 —b1x1
J = ok (3)
—b,x; a; — byx; — (k+7x7)?
First let's consider (0,0) equilibrium point.
al _% 0
J(0,0) = n
0 —_ =
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It shows that the real parts of both eigen values are negative and there is a stable node. It implies that (0,0)
steady state is locally asymptotically stable. Consider about the equilibrium point (0,1— k). After applying this
az

equilibrium point to the Jacobian, we can observe that if the trace becomes negative then tumor density component
becomes negative hence, we can obtain this equilibrium point is not a stable equilibrium point. Consider the

equilibrium point (1— k, 0). This steady state is biologically important. If this equilibrium point becomes stable
a

means we can remove the cancer completely by radiotherapy. After applying this equilibrium point to the Jacobian,
we can observe that if the trace becomes negative then the normal cell density component becomes negative hence,
we can obtain this steady state is not a stable point. If there is at least one positive equilibrium or at most two
positive equilibrium points it needs to be considered about their stability. Take that equilibrium point as (x5, x3) and

it can obtain the trace of the Jacobian as [(kf; B (kf; B
1 2

it gives if there exist one or two positive equilibrium points, they become unstable. Biologically it supplies an
important result, that is by using radiotherapy under the saturation effects we can't stabilize the tumor and normal
cells at a fixed level. On the other hand, it is difficult to remove tumor completely while keeping normal cells at a
constant level.

] > 0. This implies at least one eigen value is positive hence

Theorem 2: In the region R, = {(x1,x;) € R%:x; > 0,x, > 0} the equilibrium point (0,0) is locally asymptotically
stable. The equilibrium points (Oal - k) and (al — k,0) and other positive equilibrium points are not stable.
2 1

Mainly in radiotherapy it ionizes the DNA of cancer cells or the therapy can shrink the tumor, but sometimes it
can harm normal cells [31, 32]. If it gives a high dose, it can harm both tumor and normal cells [24], there we can
see that our system (0,0) becomes locally asymptotically stable in such a situation. In next section we focus on
numerical simulations of the system.

4. Numerical Simulations of the System

In this section, we utilize numerical simulations to gain insight into the interactions between tumors and
radiotherapy. Here we use MATLAB software for our simulations. Here, we utilized the ODE 45 package [33] in
discrete time intervals, employing the Runge-Kutta Method [34, 35] to obtain the figures in this section. When it is
given radiotherapy, it can kill cells; on the other hand, these beams can slow the growth by damaging their DNA,
and these cells are destroyed gradually. On the other hand, radiotherapy harms normal cells [21]. The blue line
represents normal cell density, and the green line represents tumor cell density. k is the half-saturation constant of
the radiotherapy effect. Here we are giving the therapy every 2 days. We are supposed to give the treatment for 20
days. Initially, radiotherapy is also administered.

We have taken initial conditions as x;, = 0.8 and x,, = 0.425 . Fig. (2) for all the diagrams n = 0.3. Fig. (2), in first
graph a; = 0.49,a, = 0.49, k = 0.6 in second graph a, = 0.35,a, = 0.35,k = 0.8, in third graph a; = 0.29,a, = 0.29,k =
1.0005. Here k plays a crucial role, when k = 0.6 both normal cell density and tumor cell density are drastically
decreasing. There we can observe that with the first couple of weeks both cell densities decreasing rapidly but in
the last week of the treatment decreasing rate becomes small. When k = 0.8 normal cells decrease but it's not like
in first graph in Fig. (2) tumor cells are also decreasing and it's very important that at the first week of the treatment
tumor level decreasing strongly and for the other two weeks tumor level decrease in a constant way, but that
decrement rate is slight. We can observe that it is decreasing from 4.25 to 2.5. When k = 1.0005 we can observe that,
although we give radiotherapy normal cell density is always approach to a constant level but tumor density gradually
decreasing, this is very effective at it doesn't make too much harm for normal cells. It gives an impressive result that
if we can keep k near 1 or slightly greater than 1 we can reduce tumor density while keeping normal cell density at
a fixed level. When we consider about saturation effects, if we can keep saturation constant level near 1, we can get
effective results to reduce tumor. But we need to fix other parameters appropriately for k.

Then let us focus on the killing rate of tumor cells by radiotherapy. According to this model, when radiotherapy
is given, both normal cells and tumor cells are killed. The blue line represents normal cell density, and the green line
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represents tumor cell density. Here, we administer the therapy every 2 days. We are supposed to give the treatment
for 20 days. Initially, radiotherapy is also given on the scheduled date.
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Figure 2: Time series analysis for the tumor density and normal cell density for different half saturation constants.
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Figure 3: Time series analysis for the tumor density and normal cell density for different killing rate tumor cells by radiotherapy.

We have taken initial conditions as x;, = 0.83 and x,, = 0.48. Here we have set the parameters as a; = 0.46,b, =
0.2,a, = 0.46,b, = 0.2,k = 1.0005. In Fig. (3) first diagram we choose n = 0.36 there we can observe in the first week
tumor density is decreasing drastically then radiotherapy is given continuously and in the second week also tumor
density is decreasing but decrement is not like in the first week. In the treatment of the third week, we can observe
that tumor population decreasing little by little for each therapy time and the important thing is this we can observe
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this radiotherapy harm to normal cells but after 3 weeks decrement is a slight amount with respect to the decrement
of the tumor density. lonizing radiation can damage DNA and regulatory of proteins [36]. This is a disadvantage in
radiotherapy. Then let’s increase killing rate of tumor cells by radiotherapy by a slight amount as n = 0.4 in Fig. (3)
second graph. We can see that with a slight increment of n it can become considerable harm for normal cells. At the
beginning Normal cell density is 0.83 then uniformly that density has approached to 0.21, it seems even a slight
increment of the n can make a big harm for the treated area, so it is needed to be careful. The biological target of
radiation in the cell is DNA.

DNA double-strand breaks can cause more killing of cells than single-strand breaks [37]. Mainly due to these
breaks, it can disrupt its genomic integrity [38] through radiotherapy [25, 31, 39]. Cancer cells are surrounded by
normal cells, so in a radiotherapy treatment, a high-energy particle of radiation can harm both normal cells and
tumor cells [25, 36, 40]. By using radiotherapy, it is necessary to kill tumor cells, but on the other hand, it is also
necessary to be careful about the harm it causes to normal cells. Due to the lack of data and complexity of the
model, we assume that the impact of radiotherapy on normal cells and tumor cells is the same. If radiotherapy
primarily affects cancer cells, tumor density will decrease rapidly, and the rate of tumor cell decrement may be
greater than that of normal cells. In that treatment, harm to normal cells is less than in our model, making it a more
successful treatment method in radiotherapy. In the next section, we focus on how each parameter affects the final
tumor density through sensitivity analysis.

5. Model Outcomes and Sensitivity Analysis

To deepen our understanding of parameter influence on tumor dynamics, we performed a local sensitivity
analysis [41, 42] of key model parameters by perturbing each parameter [43, 44] by +10% from its baseline and
evaluating the relative change [45, 46] in final tumor density (x;). The results are summarized in Tables 2 and 3 and
the original values are taken from the Table 1.

Table 2: Parameter sensitivity analysis: effect on final tumor density (x,).

Parameter Variation Parameter Value x, Change (%)
a; Base 0.46 0.0
a; +10% 0.506 -39.7
a; -10% 0.414 -100.09
a, Base 0.46 0.0
a, +10% 0.506 -93.25
a, -10% 0.414 -101.07
by Base 0.2 0.0
by +10% 0.22 -54.13
by -10% 0.18 -98.85
b, Base 0.2 0.0
b, +10% 0.22 -24.45
b, -10% 0.18 -101.09
k Base 1.0 0.0
k +10% 1.101 -105.36
k -10% 0.9 -101.71
n Base 0.36 0.0
n +10% 0.396 -101.26
n -10% 0.324 -97.39
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Table 2 evaluates how sensitive the final tumor density (x,) is to variations in parameters including: a,, a, (growth
rates), by, b, (competition coefficients), k (killing rate by radiotherapy), and 5 (radiotherapy dose). Changes in k and
n resulted in over 100% variation in x,, indicating extreme sensitivity. For example, a 10% increase in k led to a
105.36% reduction in tumor density, while a 10% increase in n caused a 101.26% reduction. Furthermore, Similar

high impacts were seen for a, and b,, indicating their strong roles in tumor dynamics.

Table 3: Parameter sensitivity ranking (Ordered by impact on final x,).

Parameter +10% Effect (%) -10% Effect (%) Avg Absolute Effect (%) Max Effect (%)
k -105.36 -101.71 103.53 105.36
n -101.26 -97.39 99.33 101.26
b, -24.45 -101.09 62.77 101.09
a, -93.25 -101.07 97.16 101.07
a; -39.7 -100.09 69.89 100.09
by -54.13 -98.85 76.49 98.85

Table 3 ranks the parameters by average and maximum effect. The top three most sensitive parameters are
k,n,and b,. These findings suggest that precise calibration of radiotherapy-related parameters is essential for
successful tumor control. Even small variations in these parameters significantly affect the outcome, reinforcing the
need for precision-based treatment protocols. A graphical representation of this summary can be seen in the
Appendix A section.
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Figure 4: Parameter value vs final tumor density.
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On the other hand, we monitored the final tumor density changes with the most sensitive parameters and Fig.
(4) describes it graphically. This figure illustrates how the final tumor density changes as a function of each model
parameter, particularly those identified as most sensitive according to Table 3. The x-axis shows the perturbed
values of a parameter and here it increased or decreased +10% from the baseline. The y-axis shows the
corresponding final tumor cell density after the 20-day treatment period. The plot illustrates how even a slight
change in specific parameters can significantly reduce tumor density, or conversely, render treatment ineffective.
Higher sensitivity implies a narrow therapeutic window; a slight miscalibration could lead to either ineffective
treatment or excessive damage to normal cells. This figure supports the idea that precision in dosing is crucial in
optimizing cancer treatment outcomes.

Moreover, the final tumor density can be analyzed for a 20-day time stamp with the top three most sensitive
parameters in Fig. (5). This figure displays time-course simulations of tumor density under perturbations of the
three most sensitive parameters, facilitating visualization of how tumor suppression evolves over the 20-day
treatment period. The x-axis represents time in days from 0 to 20, while the y-axis represents tumor cell density.
Multiple curves correspond to different parameter settings. When sensitive parameters are increased, tumor
density drops rapidly and stabilizes near zero, sometimes achieving eradication. Decreasing these same parameters
by 10% results in a much slower decay or even persistence of the tumor, indicating suboptimal therapy. Further,
this illustrates the critical importance of maintaining adequate parameter levels, especially for k, a,, and 7.

In Fig. (6) shows how the number of cancer cells changes over a 21-day treatment period, with different levels of
radiotherapy doses (1). Each colored line indicates a simulation at a specific dose, from 0.1 to 0.5. Initially, the cancer
cell counts increases and reaches its peak within the first 4 to 5 days. After that, the number drops quickly, with the
population nearing zero around day 8 and staying low through day 21. While all doses exhibit a similar overall
pattern, higher n levels (such as 0.5, shown in yellow) tend to accelerate the decline and slightly lower the peak
compared to lower doses (such as 0.1, shown in dark blue). This suggests that stronger radiotherapy can more
effectively suppress the tumor, although the differences between doses become less noticeable once the cell
population drops considerably. Overall, the results show that the treatment is quite effective across different
radiation levels, with all doses eventually leading to the disappearance of cancer cells under the conditions modeled.
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Figure 5: Tumor density for most sensitive parameters.
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Figure 6: Cancer cell population (x2) over time for different radiotherapy doses.

From a clinical perspective, the model emphasizes optimizing radiotherapy dosage and enhancing tumor
radiosensitivity. The narrow tolerance window of these parameters underscores the importance of patient-specific
calibration, supporting the case for personalized radiotherapy strategies. In next section we are conducting a
bifurcation analysis for the most sensitive parameters.

6. Bifurcation Analysis for the Most Sensitive Parameters

In this section we suppose to conduct a bifurcation analysis [26, 45] for the parameters a,, k and . Here a, plays
a critical role as it is the growth rate of tumor cells. In this context, we are using MATLAB for the simulations, and we
are taking the initial conditions as x;, = 0.65 and x,, = 0.25. We keep other parameters as in Table 2 and change a,
from 0.45 to 0.5.
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Figure 7: bifurcation diagram for growth rate of tumor cells.
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In this diagram, red color represents the maximum value of tumor density, and blue color represents the
minimum value of tumor density. In Fig. (7), the first diagram gives a weak radiotherapy dose, n = 0.36 and in Fig.
(7), the second diagram gives a strong radiotherapy dose n = 0.66. It can be observed that the tumor density
oscillates when the growth rate of tumor cells increases. Here, an interesting phenomenon happens: on one side,
tumor cells are growing, and on the other hand, radiotherapy attacks the DNA [25, 39] of these tumor cells. Then,
tumor density decreases; however, it increases again when no radiotherapy treatment is given. As it occurs, this
cycle pattern during the treatment time generates oscillations for tumor density, and it can decrease or increase
according to the initial conditions and other parameter values, as described in Fig. (2) and Fig. (3). Then, let's consider
the n, the killing rate of tumor cells by radiotherapy. The intensity of the radiotherapy is also an important factor in
cancer treatment. Here we keep x;, = 0.65 and x,, = 0.25 and change n from 0.4 to 0.7 also other parameter values
are taken from Table 2.

%1078

8

Tumor density
S (o]

N

n
Figure 8: bifurcation diagram for killing rate of tumor cells by radiotherapy.

Here (Fig. 8), a Hopf bifurcation occurs when n arrives at 0.585. When 5 is in [0.4,0.585) tumor density is oscillating,
as in Fig. (2) and Fig. (3), but when the killing rate of the tumor cells by radiotherapy is increasing, that cyclic pattern
changes to (0,0) equilibrium point, as we can observe in (0.585,0.7] maximum and minimum of tumor densities
overlap on each other, and in that case, the tumor density is in 0 level. This reveals a result that, at a strong rate of
n, it can severely harm normal cells; in clinical treatment, it is necessary to be cautious about the limitations of the
killing rate of tumor cells by radiotherapy. The half-saturation constant also plays a crucial role in this radiotherapy
treatment. We take the initial condition as x;, = 0.60 and x,, = 0.25 and we keep other parameters as in Table 2 and
change k from 0 to 2.

0.025

0.02

0.015

0.01

Tumor density

0.005

0 0.5 i 1.5

N

Figure 9: Bifurcation diagram for half saturation constant.

It can observe that when k € [0.2,0.5), it occurs a steady state with zero tumor density, then tumor level oscillates
and when k = 1.4 this difference between maximum tumor level and minimum tumor level becomes maximum. In
Fig. (2) second diagram k = 0.6 there we observed that both tumor level and normal cell density level arrives to (0,0)
equilibrium drastically, in Fig. (2), the second diagram, k = 0.8 and both levels oscillates and in Fig. (2) third diagram
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k = 1.0005 , there difference between maximum and minimum levels increase. This illustrates that when the half
saturation is in a small value radiotherapy becomes harmful for normal cells severely. It needs to keep half
saturation level to an optimal level to keep the therapy success.

7. Conclusion

Radiotherapy is like a double-edged sword, as on one hand, radiation waves generate particle beams and they
can harm the DNA of both cancer cells and tumor cells [25, 24, 47]. We developed a model using Lotka-Volterra
dynamics and saturation effects for radiotherapy treatment [16, 19, 20]. In the stability analysis of the equilibrium
points, we found that the origin is the only possible stable equilibrium point under certain parameter conditions.
The model exhibits a complex dynamical behavior, where tumor density and normal cell density oscillate in a pattern
during the treatment period. Additionally, one population density cannot approach zero, while the other population
remains at a steady level.

Then, we conducted a local sensitivity analysis [41, 42] to observe the model outcomes, primarily seeking to
identify the most essential parameters that can affect the final tumor density. We observed that the growth rate of
cancer cells, the killing rate of tumor cells by radiotherapy, and the half-saturation constant have a considerable
effect on the final tumor density and the treatment outcome. When deciding on a radiotherapy treatment, the size
of the tumor, the stage of the cancer, and its location in the body are important factors to consider. Throughout this
research, we investigate the growth rate of cancer cells, the effectiveness of radiotherapy, and the saturation level,
all of which are important factors in deciding on a radiotherapy treatment. This finding will be important in clinical
treatments.

Finally, we conducted a bifurcation analysis [48, 49] for the most sensitive parameters individually to observe
their behavior and how the asymptotical dynamics of the system change according to their behavior. When 7 is
increasing, we observed that the periodic behavior of the treatment changed to a steady level, resulting in both
population densities reaching zero. This reveals that high intensities of the radiotherapy treatment do not yield
successful results, as they also have harmful effects on normal cell density. Here, we identified threshold levels for
n from our numerical simulations of the Hopf bifurcation [49, 47]. When considering the saturation level, k, we
observed that it needs to be kept at an optimal value to get an optimal clinical outcome [50]. Fig. (9), we can see that
a minimal value of k, therapy is not successful. It needs to control these parameters with good precision, as we know
radiation can have a significant effect on not only cancer but also on normal cells; hence, they need to manipulate
radiotherapy within a suitable parameter range, otherwise therapy can be harmful to the patient. We hope these
results will help improve cancer treatment methods in radiotherapy for the future.
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