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ABSTRACT 

Accurately predicting equivalent primary energy use (EPEU) in buildings is crucial for 

advancing energy-efficient design, optimizing operational strategies, and achieving 

sustainability goals in the built environment. This study aims to develop reliable 

prediction models for EPEU by leveraging a comprehensive and high-quality dataset 

from buildings in Portland, USA. To achieve this, a systematic machine learning 

framework is adopted, encompassing feature selection, data preprocessing, model 

training, and performance evaluation. Several state-of-the-art machine learning 

algorithms are applied, including Random Forest (RF), Gradient Boosting Decision Tree 

(GBDT), and Back-Propagation Neural Networks (BP). These models are trained using key 

features such as building type, gross floor area, construction year, and various 

operational characteristics that are known to significantly influence energy consumption 

patterns. The dataset is carefully cleaned and normalized to ensure model 

generalizability and minimize bias. Model performance is assessed using standard 

statistical metrics, including the coefficient of determination (R²), Mean Absolute Error 

(MAE), and Root Mean Squared Error (RMSE). Among the tested models, ensemble 

learning methods—particularly RF and GBDT—consistently outperform others in terms 

of prediction accuracy, robustness, and stability across different building types. The 

results of this study not only highlight the potential of machine learning in energy 

prediction tasks but also provide actionable insights for architects, engineers, facility 

managers, and policymakers. By identifying the most influential variables and employing 

effective predictive models, this research supports data-driven decision-making 

processes aimed at improving building energy performance. Ultimately, the findings 

contribute to broader efforts in reducing carbon emissions and facilitating the transition 

toward more sustainable and energy-resilient urban environments. 
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1. Introduction 

The building sector is one of the largest energy consumers worldwide, accounting for a significant share of 

global primary energy use and carbon emissions. In the U.S., buildings account for 40% of total energy demand [1]. 

Accurate prediction of equivalent primary energy use (EPEU) is essential for optimizing building energy 

performance, informing policy decisions, and achieving sustainability goals. Fig. (1) illustrates the enormous 

consumption of primary energy in the U.S.'s residential, commercial, and industrial building sectors [2] from 1949 

to 2023. The difference between primary and secondary energy sources lies in the form in which they exist in 

nature and the uses to which they are put [3]. Primary energy is unprocessed energy in nature. Examples include 

oil, natural gas, coal, solar energy, and wind energy [4]. Secondary energy is energy obtained by processing or 

converting primary energy. Examples include electricity, gasoline, diesel fuel, and hydrogen [5]. Primary energy 

sources are the basis of all energy conversion processes, while secondary energy sources are usually converted or 

processed for storage, transportation, and use. The primary sources of energy consumption in buildings are 

heating, ventilation, and air conditioning (HVAC) systems, water heating equipment, elevators, and lighting 

systems [6]. Traditional energy modeling approaches rely on deterministic methods, which may struggle to 

capture complex, nonlinear interactions among building characteristics, usage patterns, and environmental 

factors. Some data science methods are used in energy efficiency applications, such as optimization, neural 

networks, statistical analysis, and energy simulation [7]. However, a few studies have focused on comparing these 

algorithms' performance in building energy efficiency, especially primary energy prediction. 

 

Figure 1: Energy consumption: residential, commercial, and industrial sectors. 

Machine Learning is one of today's fastest-growing technological areas, at the intersection of computer science 

and statistics, and is at the heart of artificial intelligence and data science [8]. It enables the discovery of hidden 

patterns and improves predictive accuracy by utilizing large data sets [9]. However, a knowledge gap exists in 

applying and comparing multiple ML algorithms for building EPEU prediction in specific urban environments [10]. 

In contrast, the Portland region of the United States, with its diverse building stock and data on different energy 

consumption profiles, provides an ideal case study for exploring the potential of ML-based prediction methods. 

The contributions of this study are: (1) Developing a more convenient primary energy forecasting model by 

using EPEU as a target variable. (2) Utilizing a comprehensive dataset of the Portland area to provide area-specific 

insights that are not adequately captured in the literature. (3) Systematically compare multiple ML algorithms, 

such as the Random Forest (RF) and CatBoost algorithms, to assess their performance and applicability in EPEU 

forecasting. In summary, this study contributes to the growing knowledge base on the application of ML in 

building energy consumption prediction. It provides actionable insights for optimizing energy use in urban 

environments. 

2. Literature Review 

The accurate prediction of energy use has been a critical area of research for decades, with traditional 

approaches primarily relying on physics-based models or statistical regression methods [11]. While these methods 
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provide a foundational understanding, they often require extensive domain expertise. They may lack the flexibility 

to account for the nonlinear interactions among factors such as building design, operational patterns, and climatic 

conditions [12]. 

In recent years, machine learning (ML) techniques have emerged as powerful tools for addressing these 

challenges. Studies have demonstrated the effectiveness of ML algorithms, including Random Forest (RF), Gradient 

Boosting Machines (GBM), Support Vector Machines (SVM), and Backward Propagation Neural Networks (BP), in 

capturing complex relationships and improving prediction accuracy [13]. However, most existing research focuses 

on either single algorithms or generic energy use intensity (EUI), with limited attention given to equivalent primary 

energy use (EPEU), which is a more comprehensive measure reflecting both direct and indirect energy 

consumption [14]. 

Moreover, many studies are based on datasets from specific regions or building types, leading to limited 

generalizability of findings [15]. With its diverse building stock and unique energy consumption patterns, the 

Portland area remains underexplored in ML-based EPEU prediction. Additionally, there is a lack of systematic 

comparison of ML algorithms to identify their relative strengths and weaknesses under different scenarios [16]. 

3. Materials and Methods 

3.1. Materials 

The Building Performance Database (BPD) is the largest dataset of information on the energy-related 

characteristics of commercial and residential buildings in the U.S. The BPD integrates, cleans, and anonymizes 

data collected by federal, state, and local governments, utilities, energy efficiency programs, building owners, and 

private companies and makes it available to the public. It can be accessed at https://bpd.lbl.gov/explore. The site 

allows users to explore the real estate industry and regional data and compare various physical and operational 

characteristics to understand market conditions and energy performance trends better. Notably, BPD is 

sponsored by the U.S. Department of Energy's Office of Building Technologies. Lawrence Berkeley National 

Laboratory and Earth Advantage developed the web application. The data for this study then comes from the 

2019 Portland Building Energy Efficiency Report. This dataset includes individual building records publicly available 

in the Portland Building Energy Efficiency Report. The dataset has been cleaned and formatted according to the 

Portland Building Energy Efficiency Report rules and contains only a portion of the original data. In addition, 

building density and climate conditions in Portland are shown in Fig. (2). Portland's building density is moderate, 

and the downtown area is dominated by low-rise and mid-rise buildings that emphasize the integration of green 

space and community space. The climate is temperate and maritime, with mild, rainy winters and warm, dry 

summers, making it ideal for living and outdoor activities. 

Table 1: Sample descriptive analysis (N=485). 

ID N Minimum  Maximum  Mean Standard Deviation 

FT 485 1.00 10.00 6.6990 2.61751 

FA 485 14810 3258912 116798.14 234278.672 

YB 485 1880 2019 1966.29 35.716 

SE 485 9 562 86.95 63.823 

SoE 485 24 1188 186.08 130.690 

 

Table 1 demonstrates the basic statistical characteristics of the 485 sample buildings, including floor area (FA), 

year of construction (YB), site energy intensity (SE), and source energy intensity (SoE). The FA ranged from 14,810 

to 3,258,912 square feet, with a mean value of 116,798.14 and a large standard deviation, indicating that building 

sizes varied significantly in the sample. The building years spanned a wide range, with an average year of 
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construction of 1966. The mean values of SE and SoE were 86.95 and 186.08 kBtu/ft², respectively, both with high 

standard deviations, suggesting that the level of building energy consumption fluctuates widely, providing a basis 

for further categorization or modeling analyses. 

 

Figure 2: Building density and climate conditions in Portland. 

3.2. Methods 

As illustrated in Fig. (3), the methods used in this study are based on several well-defined steps that provide a 

solid and rigorous approach to achieving our goals. We are working on more advanced techniques for predicting 

primary energy consumption in buildings. The first step is data preprocessing, removing vacant entries in the 

source data and checking for information integrity. Step 2: Feature Extraction In this step, we manually extract 

feature items with complete information from the source data. This step can highlight patterns and essential 

information in the data. Next, we divide the data into two groups: 80% for training and 20% for the testing set. The 

third step is cross-validation learning. In this critical phase, we use algorithmic cross-validation to train our model. 

In this way, we can test different algorithms and select the best performance to regress the primary energy 

consumption of buildings, which is our specific task. The fourth step is testing and evaluation. Each algorithm is 

trained on preprocessed data and extracted features, and then the model is evaluated on an independent test 

dataset. We use a test dataset independent of the training and validation datasets to assess the model's 

performance. 

 

Figure 3: Research process. 
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Bayesian Optimization is used to regulate the hyperparameters of machine learning models [17]. Compared 

with traditional grid or random search, it effectively reduces the computational cost and improves efficiency by 

constructing a probabilistic model of the objective function and selecting the parameter combinations most likely 

to improve the model's performance at each step [18]. This approach is particularly suitable for modeling 

scenarios with large parameter space and high training costs and can find parameter configurations with better 

performance faster. 

To ensure the robustness of the model evaluation, the study also adopts a 5-fold cross-validation strategy, 

which effectively reduces the evaluation bias that may be brought about by different data divisions [19]. In 

addition, to ensure the consistency of the distribution of categories between the training and testing sets, the 

study adopts stratified sampling to divide the data, to maintain a consistent proportion of each type of sample in 

each fold, avoiding the model's bias towards a certain type of samples, and improving the model's generalization 

ability and the reliability of the assessment results [20]. 

 3.2.1. CatBoost Algorithm 

CatBoost is a Gradient Boosting Decision Trees (GBDT) based algorithm optimized to handle categorical 

features and sequential data [21]. The steps of the algorithm are as follows: (1) Generate an initial model, starting 

with a simple model, usually the average of all target values; (2) Iteratively construct a tree, calculating the 

residuals (i.e., prediction error) of the current model, using the residuals to construct a new decision tree, fitting 

these residuals, and adding this tree to the model to reduce the error; (3) Update the model and repeat the 

iterations, gradually adding decision trees until a predetermined number of trees or other stopping conditions are 

reached [22]. The specific parameter settings are shown in Table 2. 

Table 2: CatBoost model parameter setting. 

Parameter Value 

Training set ratio 0.8 

Loss function Logloss 

Number of iterations 500 

Learning rate 0.1 

Maximum tree depth 6 

Feature subset ratio 1.0 

L2 regularization 3.0 

 

3.2.2. LightGBM Algorithm 

LightGBM is an efficient machine learning algorithm based on Gradient Boosting Decision Trees (GBDT), which 

is mainly used for learning tasks dealing with large-scale data and high-dimensional features [23]. It employs 

optimization strategies that enable faster training, lower memory footprint, and the ability to handle large 

amounts of data and features. The steps of the algorithm are as follows: (1) initialization, constructing an initial 

learner (tree) as the base model; (2) iterative training, constructing more learners sequentially by iterative means, 

each learner tries to correct the error of the previous learner; (3) gradient optimization, optimizing the model 

according to the gradient information in each iteration, to minimize the loss function of the model on the training 

set; (4) leaf node splitting, which selects the optimal features and splitting points according to the splitting gain 

and gradually generates a more complex decision tree structure; and (5) boosting learning, which improves the 

overall model's prediction ability by accumulating the prediction results of multiple simple models [24]. The 

specific parameter settings are shown in Table 3. 
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Table 3: LightGBM model parameter setting. 

Parameter Value 

Training set ratio 0.8 

Booster type but 

Number of learners 100 

Learning rate 0.1 

Maximum tree depth 5 

Maximum number of leaves in the tree 31 

Minimum number of samples in child nodes 20 

Minimum weight of child nodes 0.001 

Minimum node splitting gain 0.0 

Sample sampling rate 1.0 

Single tree sampling rate 1.0 

Sampling frequency 1 

 

3.2.3. AdaBoost Algorithm 

The core idea of the AdaBoost (Adaptive Boosting) algorithm is to combine multiple weak classifiers into one 

strong classifier [25]. The steps of the algorithm are as follows: (1) initialize weights, assign equal initial weights to 

each training sample; (2) train weak classifiers, train a weak classifier based on the weights of the current samples 

and calculate its error rate; (3) update weights, increase the weights of misclassified samples, so that the 

subsequent weak classifiers will pay more attention to these samples, and reduce the weight of the correctly 

classified samples; (4) combine classifiers, combine the weighted results of all the weak classifiers to form the final 

strong classifier; and (5) combine the weighted results of all the weak classifiers to form the final strong classifier. 

Classifiers combine the weighted results of all weak classifiers to form the final strong classifier; (5) AdaBoost can 

significantly improve classification performance by iterating the above steps repeatedly [26]. The specific 

parameter settings are shown in Table 4. 

Table 4: AdaBoost model parameter setting. 

Parameter Value 

Training set ratio 0.8 

Loss function Linear 

Number of learners 100 

Learning rate 1.0 

 

3.2.4. XGBoost Algorithm 

XGBoost (eXtreme Gradient Boosting) is a gradient-boosting algorithm that builds a more potent model by 

iteratively training weak classifiers (usually decision trees) and integrating their predictions [27]. The key points 

include [28]: (1) XGBoost is a gradient-boosting algorithm that gradually improves the overall model performance 

by combining multiple weak learners. Each iteration corrects the error of the previous model round and 

progressively improves the overall model performance; (2) Decision tree-based learner, XGBoost uses decision 

trees as the base learner to form a powerful integrated model. Each decision tree splits the data by selecting the 

optimal split point based on the principle of gradient descent; (3) Regularization terms, it introduces regularization 

terms, including L1 regularization and L2 regularization, to control the complexity of the model and prevent 

overfitting, and the regularization terms control the complexity of the tree by introducing penalty terms in the loss 
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function; (4) XGBoost provides an intuitive way to evaluate the importance of features by analyzing the 

contribution of features at the split points of the tree. The specific parameter settings are shown in Table 5. 

Table 5: XGBoost model parameter setting. 

Parameter Value 

Training set ratio 0.8 

Lifter type gbtree 

Number of learners 100 

Learning rate 0.1 

Maximum tree depth 6 

Sample sampling rate 1.0 

Feature sampling rate 1.0 

Smallest sub-node weight 1.0 

Split gain threshold 0.0 

L1 regularization 0.0 

L2 regularization 1.0 

 

3.2.5. GBDT Algorithm 

GBDT (Gradient Boosting Decision Tree) is an integrated learning algorithm based on decision trees, which 

iteratively weighs multiple weak classifiers (decision trees) to improve the accuracy of the model [29]. In each 

iteration, GBDT calculates the residual (the difference between the actual value and the predicted value) based on 

the prediction result of the previous model round and uses the residual as the training target of the next round of 

the model. The steps of the algorithm are as follows [30]: (1) initialization, by fitting an initial model (e.g., the mean 

value) to get the initial predicted value; (2) calculation of residuals, by calculating the residuals (differences) 

between the predicted value and the actual value of the current model; (3) fitting the residuals, by fitting a 

regression tree (decision tree) to predict the residuals, to make the residuals decrease; (4) updating the model, by 

multiplying the prediction result of the regression tree by a learning rate (or step size) to update the current 

model; (5) Repeat iterations, repeating steps 2 to 4 until a preset number of iterations is reached or the residuals 

are already small enough; (6) Integrate the model, combining all of the regression trees to form the final 

integrated model, with the predictions of each tree weighted and summed together to obtain the final predicted 

values. The specific parameter settings are shown in Table 6. 

Table 6: GBDT model parameter setting. 

Parameter Value 

Training set ratio 0.8 

Loss function Linear 

Number of learners 100 

Learning rate 0.1 

Maximum tree depth 6 

Sample sampling rate 1.0 

Minimum number of samples for node splitting 2 

Minimum number of leaf node samples 1 

Model convergence parameters 0.001 
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3.2.6. BP Algorithm 

BP Neural Network (Back-Propagation Network) consists of two processes: forward propagation of the signal 

and backpropagation of the error [31]. That is, the calculation of the error output is performed in the direction 

from input to output, while the adjustment of weights and thresholds is performed in the direction from 

production to input. In forward propagation, the input signal acts on the output node through the implicit layer 

and undergoes a nonlinear transformation to produce an output signal. If the actual output does not match the 

desired output, it is transferred to the process of backpropagation of the error. Error backpropagation is to back-

propagate the output error through the hidden layer to the input layer by layer, apportion the error to all units in 

each layer, and use the error signal obtained from each layer as the basis for adjusting the weights of each unit 

[32]. By changing the strength of the connection between the input node and the hidden layer node and the 

strength of the connection between the hidden layer node and the output node, as well as the threshold value, 

the error decreases along the gradient direction. After repeated learning and training, the parameters of the 

network (weights and thresholds) corresponding to the minimum error are determined. The specific parameter 

settings are shown in Table 7. 

Table 7: BP model parameter setting. 

Parameter Value 

Training set ratio 0.8 

Hidden layer neuron settings (100) 

Activation function ReLU 

Weight optimization method Adam 

L2 regularization coefficient 1.0E-4 

Initial learning rate 0.001 

Learning rate optimization method Constant 

Minibatch size Custom 

Maximum number of iterations 200 

Optimization tolerance 1.0E-4 

 

3.2.7. RF Algorithm 

Random Forest (RF) is an integrated algorithm, a classifier containing multiple decision trees. Compared with a 

single decision tree, the Random Forest algorithm will perform better and can effectively prevent the 

phenomenon of overfitting [33]. The steps of the construction process are as follows [34]: (1) Random Forest 

randomly selects n training samples each time there is a put back (which can be controlled by the parameters) to 

form a new training set; (2) Decision tree construction is performed with the newly selected samples, and when 

constructing the decision tree, not all the features are used but some of the features are used, and each time the 

split adopts a particular strategy to select one of them as the split attribute; (3) Repeat the second step of the 

process until it cannot be split anymore; (4) Repeat the second step of the process until it cannot be split anymore; 

(5) Repeat the second step of the process until it cannot be split anymore. process until it cannot be split again; (4) 

Repeat steps 1~3 to build multiple decision trees, and numerous decision trees form a random forest. Each 

decision tree produces a categorization result when predicting, and the category with the highest final vote is the 

final model prediction. The specific parameter settings are shown in Table 8. 

3.2.8. ET Algorithm 

The Extremely Randomized Trees (ET) algorithm is an integrated learning method to improve the generalization 

ability and stability of the model by constructing multiple extremely randomized decision trees [35]. The  

main  steps  are  as  follows  [36]: (1) Sample selection, randomly select samples from the training data; (2) Feature 
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Table 8: RF model parameter setting. 

Parameter Value 

Training set ratio 0.8 

Number of decision trees 100 

Node split criteria squared_error 

Minimum number of samples for node splitting 2 

Minimum number of leaf node samples 1 

Maximum tree depth No limit 

Maximum number of features Sqrt 

Whether to put back sampling Yes 

Whether or not out-of-bag data testing Yes 

 

selection, at each node, randomly select a part of features; (3) Split point selection, for each selected feature, 

randomly select a split point; (4) Node splitting, use randomly selected features and split points to split the node 

to create child nodes; (5) Tree construction, repeat the steps above until the predefined stopping conditions are 

reached (e.g., maximum tree depth or minimum number of node samples); (6) Integration of results, which 

integrates the prediction results of all trees (using voting for classification problems and averaging for regression 

problems). This randomization gives the Extra Trees algorithm an advantage in handling high-dimensional data 

and preventing overfitting. The specific parameter settings are shown in Table 9. 

Table 9: Extra Trees model parameter setting. 

Parameter Value 

Data preprocessing None 

Proportion of training set 0.8 

Number of decision trees 100 

Node split criteria squared_error 

Minimum number of samples for node splitting 2 

Minimum number of leaf node samples 1 

Maximum tree depth No limit 

Maximum number of features limit Auto 

Whether or not put back sampling Yes 

Whether out-of-bag data testing Yes 

 

4. Results and Discussion 

4.1. Correlation Analysis 

Correlation analysis is used to study the relationship between quantitative data, whether there is a relationship 

or not, and how close the relationship is [37]. As can be seen from Table 10 above, correlation analysis is used to 

study the correlation between Facility type (FT) and Floor area (FA), Year built (YB), Site Eui (SE), Source Eui (SoE), 

using Spearman's correlation coefficient to indicate the strength of the correlation. Spearman's correlation 

coefficients reveal that FT is negatively correlated with SE (r = -0.257, p<0.01) and SoE (r = -0.215, p<0.01), 

indicating that certain facility types tend to have lower energy use intensities. FA shows a weak positive correlation 
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with SoE (r = 0.090, p<0.05), suggesting that larger floor areas slightly increase source energy usage. YB is 

positively correlated with SE (r = 0.133, p<0.01) and SoE (r = 0.166, p<0.01), implying that buildings constructed 

more recently have slightly higher energy intensities. Notably, SE and SoE are strongly correlated (r = 0.944, 

p<0.01), reflecting their direct relationship as energy performance measures. 

Table 10: Correlation analysis. 

Items Mean S.D. FT FA YBt SE SoE 

FT 6.699 2.618 1     

FA 116798.140 234278.672 0.065 1    

YB 1966.291 35.716 -0.019 0.042 1   

SE 86.954 63.823 -0.257** 0.086 0.133** 1  

SoE 186.080 130.690 -0.215** 0.090* 0.166** 0.944** 1 

* p<0.05 ** p<0.01. 

4.2. Regression Analysis 

The model evaluation result indicators are used to evaluate the advantages and disadvantages of the models 

and compare them. As shown in Table 11, this study provides 8 evaluation indicators, among which 4 indicators, 

R2 value, MAE, MSE, and RMSE, are used more [38]. Second, more attention is usually paid to the evaluation 

results at the time of the test set. Third, if the metrics fit significantly better in the training set than in the test set, 

it implies an overfitting problem. Fourth, if the fit metrics are abnormal (not within the standard range), such as 

the R2 value appearing to be less than 0, it means that the data fits the model poorly, and it is recommended to 

discard the model. 

Table 11: Indicators for model evaluation. 

Indicator Description 

R2 The degree of fit indicator, the greater, the better between 0 and 1. 

Mean Absolute Error (MAE) L1 loss, the mean difference between true and fitted values; the closer to 0, the better. 

Mean Square Error (MSE) L2 loss, the mean sum of squared errors; the closer to 0, the better. 

Root Mean Square Error (RMSE) MSE open root sign, average gap value. 

Median absolute error (MAD) 
The absolute value of the residuals of the predicted value from the media,  

independent of outliers, the smaller, the better. 

Mean Absolute Percentage Error (MAPE) Mean percent error, independent of outliers, more minor is better. 

Explainable Variance Score EVS 
The measure of the model's strength in explaining data fluctuations, between  

[0,1] is that the more significant, the better. 

Mean square logarithmic error (MSLE) It penalizes underprediction more (less use) when RMSE is the same. 

 

Table 12 summarizes the performance of eight machine learning models during training. CatBoost, GBDT, and 

XGBoost exhibit the highest R2 values (close to 1), indicating excellent predictive accuracy, with GBDT slightly 

outperforming others. In contrast, the BP (Backpropagation Neural Network) model shows the lowest R2 and the 

highest errors (MAE, MSE, RMSE, and MAPE), suggesting inferior performance during training. Among the metrics, 

GBDT achieves the lowest MAE (3.136), MSE (17.785), and RMSE (4.217), demonstrating superior fitting quality. 

Other tree-based models, such as RF and ET, perform strongly but are less accurate than GBDT. 

Table 13 evaluates the models on test data, revealing how well they generalize. CatBoost, XGBoost, and GBDT 

maintain strong R2 values (above 0.87) and low error metrics, indicating good predictive capabilities. CatBoost 

achieves the lowest MAE (20.801) and high R2 (0.908), making it the top performer on test data. LightGBM and 
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XGBoost also show competitive performance, while BP struggles, with the highest MSE (3837.057) and RMSE 

(61.944), highlighting its poor generalization. The strong alignment between training and testing results for tree-

based models suggests robust performance across data splits. 

Table 14 highlights the importance of input features for each model. Across most models (Fig. 4), Site EUI is the 

most significant feature, contributing over 82% of the predictive weight in all tree-based methods (and exceeding 

93% for GBDT, RF, and ET). Floor Area and Year Built are moderately influential in LightGBM, while their impact is 

less pronounced in other models. Notably, facility type is of relatively low importance across all models. These 

results indicate that energy use intensity (Site EUI) is the dominant factor in model predictions. It is a direct 

reflection of the overall energy consumption efficiency of a building, particularly the operation of the heating, 

ventilation, and air conditioning (HVAC) system. The energy efficiency of the HVAC equipment, its maintenance 

status, and the insulation of the building envelope significantly affect the Site EUI, making it a key predictor of a 

building's primary energy use. In contrast, the effect of floor area on energy use is more muted, as reflected in the 

literature. For example, it has been shown that while a larger floor area generally implies higher total energy use, 

its effect may be masked by HVAC operating efficiency, usage patterns, and climatic conditions when normalized 

(i.e., how the EUI is calculated). 

The main reason for the fit variability is due to the different algorithmic characteristics of the models and their 

ability to handle data features (Fig. 5). Tree models (e.g., CatBoost, XGBoost, GBDT, etc.) capture nonlinear 

relationships by splitting the feature space and have a strong fitting ability to high-dimensional and unbalanced 

data, thus showing high accuracy in training and testing [39]. On the other hand, BP neural networks are sensitive 

to parameter initialization and optimization of the training process and are prone to fall into local optimums. At 

the same time, their processing of nonlinear features relies on larger sample sizes and tuning optimization, 

resulting in poorer fitting results [40]. In addition, there are also differences in the allocation of feature weights 

among the models. For example, the tree model pays more attention to Site EUI as a key feature. At the same time, 

BP cannot effectively capture the importance of the feature, which further widens the fitting differences among 

the models. Its limitations are reflected in its weak ability to process time-series data and difficulty capturing long-

term dependencies. Alternative architectures, such as Long Short-Term Memory Networks (LSTM), can be 

considered to address this issue. By introducing memory units and gating mechanisms, LSTM can effectively 

handle the time-series characteristics of building energy consumption, such as seasonal variations, usage patterns, 

and the dynamic effects of weather factors. In addition, combining LSTM with CNN (Convolutional Neural 

Network) or Transformer architecture can further improve the model's prediction accuracy and enhance its ability 

to model complex nonlinear relationships. 

4.3. Discussions 

Physical modeling and data-driven approaches are two main approaches to building energy consumption 

prediction [41, 42]. Physical modeling relies on thermodynamic principles to simulate and analyze building energy 

 

Table 12: Model evaluation train results. 

Index CatBoost LightGBM AdaBoost XGBoost GBDT BP RF ET 

R2 0.997 0.931 0.952 0.996 0.999 0.656 0.984 0.985 

MAE 5.610 17.173 24.038 6.447 3.136 56.237 10.008 9.518 

MSE 53.156 1287.426 902.707 74.912 17.785 6443.479 306.552 272.184 

RMSE 7.291 35.881 30.045 8.655 4.217 80.271 17.509 16.498 

MAD 4.396 10.205 20.126 4.675 2.325 41.114 6.622 6.061 

MAPE 0.159 0.383 0.691 0.177 0.090 1.700 0.213 0.205 

EVS 0.997 0.931 0.952 0.996 0.999 0.657 0.984 0.986 

MSLE 0.003 0.017 0.049 0.004 0.001 0.195 0.005 0.005 
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Table 13: Model evaluation test results. 

Index CatBoost LightGBM AdaBoost XGBoost GBDT BP RF ET 

R2 0.908 0.871 0.845 0.891 0.876 0.618 0.875 0.889 

MAE 20.801 21.907 26.747 20.663 22.031 43.821 23.409 21.742 

MSE 922.194 1291.835 1552.812 1096.311 1248.673 3837.057 1256.819 1108.981 

RMSE 30.368 35.942 39.406 33.111 35.337 61.944 35.452 33.301 

MAD 14.721 14.602 19.170 13.284 13.932 30.573 16.847 15.498 

MAPE 0.123 0.119 0.154 0.112 0.120 0.314 0.126 0.117 

EVS 0.909 0.873 0.846 0.893 0.878 0.625 0.877 0.891 

MSLE 0.024 0.022 0.036 0.021 0.025 0.122 0.024 0.021 

 

 
Figure 4: Comparison of the feature’s weighting results. 

 

Figure 5: Comparison of the results of each model fit. 
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Table 14: Feature weighting results. 

Index CatBoost LightGBM AdaBoost XGBoost GBDT BP RF ET 

Facility type 6.65% 9.27% 3.48% 1.73% 2.52% N/A 1.93% 2.86% 

Floor area 6.43% 26.58% 4.00% 4.07% 2.01% N/A 3.92% 1.52% 

Year built 4.72% 24.08% 6.92% 1.32% 1.73% N/A 2.05% 1.83% 

Site eui 82.20% 40.07% 85.60% 92.88% 93.74% N/A 92.10% 93.79% 

 

consumption in detail. Commonly used building energy simulation software includes EnergyPlus®, eQuest®, and 

Ecotect® [43]. These software programs calculate the energy consumption of a building by inputting detailed 

building and environmental parameters such as building construction details, operation schedules, HVAC design 

information, climatic conditions, sky conditions, and solar/shading factors [44]. However, in real-world simulations, 

it is often difficult for users to obtain all the necessary details, which can affect the accuracy of the inputs [45, 46]. 

In contrast, data-driven approaches to building energy prediction do not require complex energy analysis or rely 

on detailed modeling of the building but instead, achieve energy prediction by learning from historical data [47, 

48]. It is the latter approach that is used in this paper. 

We recommend developing systems that visualize the energy consumption of each building in a city, allowing 

companies to quickly identify outliers (buildings that consume far more energy than expected even after adjusting 

for relevant predictors) [49, 50]. For example, they can target homes for potential retrofits or tiered pricing 

schemes [51]. For other end-users, an interface could be provided to enter their electricity and gas usage, as well 

as basic household information, to determine how their consumption compares to that predicted by the model 

for similar buildings [52]. Making users aware of their consumption in this way and relating it to consumption in 

similar buildings can produce behavioral changes that can lead to significant reductions in consumption. 

This paper demonstrates that by learning from a large amount of historical energy consumption data, data-

driven models (e.g., ML models) can capture the complex nonlinear relationships of building energy consumption, 

and their prediction accuracies outperform those of traditional physical models in many cases, especially when 

the data quality is high [53]. Second, compared to physical modeling that requires inputting many buildings' 

physical and environmental parameters, data-driven approaches are more rapid and easy to operate, making 

them more suitable for real-world engineering applications and rapid assessment scenarios [54]. Third, the data-

driven approach can be flexibly adapted to predict energy consumption in different types of buildings, different 

climatic zones, and even different usage scenarios (e.g., commercial, residential, and industrial buildings) [55]. 

Site Energy Use Intensity (Site EUI) dominates EPEU because it directly reflects the overall energy consumption 

efficiency, especially the operation of heating, ventilation, and air conditioning (HVAC) [56, 57]. The energy 

efficiency of the HVAC equipment, its maintenance conditions, and the insulation of the building envelope can 

significantly affect Site EUI, which can thus become a predictive building primary energy use. In contrast, the effect 

of the floor area on energy consumption is relatively weak, as reflected in the literature [58, 59]. For example, it 

has been shown that while a larger floor area generally implies higher total energy use, its effect may be masked 

by HVAC operating efficiency, occupancy patterns, and climatic conditions when normalized (i.e., how the EUI is 

calculated) [60, 61]. 

5. Conclusion 

The paper provides insights into the potential of machine learning algorithms for predicting building equivalent 

primary energy use (EPEU) using a comprehensive dataset for the Portland area. By systematically evaluating the 

performance of multiple ML models, the study finds that ensemble learning methods such as Random Forest (RF) 

and Gradient Boosting Machine (GBDT) show excellent results in energy prediction. At the same time, algorithms 

such as CatBoost and XGBoost also show high accuracy and robustness. These results provide valuable support 

for data-driven decision-making in building energy efficiency improvement and energy management. However, 
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the study also points out several directions that need further exploration. First, incorporating more dynamic 

factors (e.g., occupant behavior, real-time energy consumption data, and renewable energy integration) can help 

improve the model's predictive power. Second, expanding the scope of the study to a broader geographic area 

and diverse building types could enhance the applicability and generalizability of the findings. In the future, 

incorporating explainable artificial intelligence (XAI) techniques can help reveal key drivers of energy use, thus 

providing policymakers and building managers with a more straightforward basis for intervention. In conclusion, 

this study validates the broad application prospects of machine learning in building energy analysis. It provides a 

critical research foundation and direction for addressing urban sustainability challenges in the future. 

It is worth noting that regional biases, such as Portland's mild climate, differ from those in other regions. 

Therefore, validation should be done in different climates, such as hot and humid or cold regions. Future research 

could integrate Internet of Things (IoT) data, such as real-time occupancy and indoor and outdoor climate 

parameters, to improve prediction accuracy. Some hybrid modeling approaches, such as combining physically 

driven models with machine learning (ML) methods can also be tried to better capture the dynamic characteristics 

of building energy consumption. 
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