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ABSTRACT 

To address the impact of photovoltaic (PV) policies on the expansion of offshore PV 

installed capacity, this study proposes a prediction model based on system dynamics 

(SD) theory. This model quantifies policy types and practical situations, and the 

scoring results reflect the policy's influence effectiveness. The Grey Wolf Optimizer 

(GWO) is employed to optimize the influence coefficients of supportive, guiding, and 

developmental policy effectiveness within the model, thereby improving the model's 

precision and accuracy. First, a system dynamics model was constructed to analyze 

the relationships among PV power generation costs, revenues, installation 

willingness, and installed capacity. Then, the policy implementation effect was 

integrated into the SD model in the form of policy effectiveness, and a policy 

effectiveness evaluation system was established. Finally, simulation prediction and 

analysis were conducted. Predicted values of offshore PV installed capacity in Jiangsu 

Province from 2021 to 2024 were compared with actual data to verify the 

effectiveness of the model. Subsequently, offshore PV installed capacity and 

investment costs from 2025 to 2030 were simulated and analyzed. Case study results 

indicate that the predictions of the proposed model are consistent with industry 

development trends and provide valuable references. 
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1. Introduction 

With the ongoing transformation of the energy structure, offshore PV has emerged as a key research area due 

to its dual advantages of utilizing marine space resources and smoothing energy fluctuations [1-3]. In this context, 

evaluating the actual impact of PV policies on the offshore PV industry and accurately predicting changes in 

installed capacity can provide valuable insights for power grid operations and economic planning. 

In recent years, numerous domestic and international scholars have researched and analyzed PV installed 

capacity forecasting. Reference [4] proposed an incentive policy forecasting model based on PV industry profits 

and costs, along with a user decision-making model for grid-connected PV methods. This served as the foundation 

for a system dynamics model of distributed PV installed capacity that incorporates the evolution of incentive 

policies. Reference [5] developed an evaluation model based on three dimensions: renewable energy policy 

intensity, policy objectives, and policy measures. The results indicate that the number of renewable energy policy 

documents issued in China generally follows the trend of overall policy effectiveness, , while average policy 

effectiveness remains relatively stable. In terms of trends, policy measures received higher average scores, 

suggesting that efforts should focus on enhancing the average effectiveness of policy intensity and objectives. 

Reference [6] collected PV industrial policy documents from 2010 to 2020, established a quantitative evaluation 

model, calculated annual policy effectiveness, and evaluated the implementation effects of different policy 

instruments. The results show that the number of PV industrial policies is generally consistent with the overall 

trend of policy effectiveness, albeit with significant fluctuations, while the average annual effectiveness varies less. 

Thus, it was found that, compared to environmental policies, the implementation effects of supply-side and 

demand-side policies are less effective. 

The above studies evolve and predict the impact of China's PV policies from perspectives such as investment 

costs, policy intensity, and subsidies incentives, but they do not deeply investigate the influence of PV policies. 

Currently, the mainstream approach among domestic and foreign scholars for analyzing policy impacts on 

industry development is to quantify policy effects as policy effectiveness for analysis and evaluation. This paper 

integrates a system dynamics model, introduces policy effectiveness into the system dynamics model, and 

incorporates policy implementation effects into the causal feedback loop, thereby reducing prediction error [7-9]. 

Due to the difficulty in determining the influence coefficients of different types of policy effectiveness, random 

assignment can reduce accuracy. Therefore, swarm intelligence algorithms commonly used for optimization are 

particularly important. The GWO is an intelligent optimization algorithm inspired by the hunting behavior of grey 

wolf packs, proposed by Mirjalili et al. in 2014. This algorithm mimics the hierarchy and hunting mechanism of 

grey wolf society and achieves adaptive adjustment of core parameters through simply control of the number of 

wolves and the maximum number of iterations [10-14]. Using the root mean square error between the predicted 

and actual values as the objective function, the parameter set with the lowest fitness value is obtained, yielding 

the influence coefficients for supporting, guiding, and development-oriented policies. 

Based on the aforementioned research, this paper proposes a system dynamics-based forecasting model for 

offshore PV installed capacity that considers the impact of different policies. Policy texts related to PV in China 

from 2019 to 2024 are transformed into policy effectiveness and introduced into the system dynamics forecasting 

model to analyze the impact of different policy types on offshore PV installed capacity. The grey wolf algorithm is 

then applied to optimize and calculate the influence coefficients of different policies, enabling the prediction of 

China's offshore PV installed capacity from 2021 to 2030. This provides a reference for subsequent power grid 

operations and economic planning. 

The innovation of this research lies in transforming "policy effectiveness" from a static "switch variable" into a 

quantifiable, feedback-enabled endogenous dynamic variable, systematically embedding it into the SD framework, 

thereby constructing an integrated simulation model that aligns with real policy operation logic. The photovoltaic 

policy system was disaggregated into three major dimensions: supply-side, demand-side, and environmental. 

Static policy assumptions were dynamized, significantly enhancing the model's explanatory and predictive power 

for policy evolution. Building upon this, the study further introduces the GWO algorithm, using historical newly 
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added installed capacity curves as the training target, to optimize the effectiveness parameters for supply, 

demand, and environmental policies, thereby improving the accuracy and speed of the capacity prediction 

process. This coupled framework demonstrates the impact of different policy types on installed capacity, providing 

verifiable dimensions and a basis for renewable energy policies. 

2. System Dynamics Modeling 

System dynamics is suitable for complex networks influenced by multiple parameters, possesses strong multi-

information processing capabilities, and is applicable to dynamic behavior analysis of nonlinear relationships in 

networks [15-19]. This paper takes offshore PV installed capacity as the research object, comprehensively 

considers policy factors that directly affect the total revenue from offshore PV power sales such as per-kWh 

subsidies, sales electricity price, and benchmark on-grid electricity price and constructs a system dynamics 

prediction model for offshore PV installed capacity. Causal feedback relationships between different variables are 

represented by arrows, indicating that an increase or decrease in one variable causes changes in associated 

variables. The established system dynamics simulation model is shown in Fig. (1). 

 

Figure 1: Policy and offshore PV development system dynamics model. 

2.1. Model Building Analysis 

The model constructed in this section sets the cumulative installed capacity of offshore PV as the primary state 

variable, with the corresponding flow variable being the annual newly installed capacity [20-25]. The remaining 

components, such as return on investment, willingness to install offshore PV, and total costs of PV power 

generation, are auxiliary variables. The influence mechanism between variables is as follows. 

(1) The cumulative installed capacity of offshore PV, statistically measured at the end of each year, is taken as 

the cumulative amount, with the flow being the newly installed offshore PV capacity in the target year. The newly 

installed capacity in the target year is mainly affected by two factors: the newly installed capacity in the previous 

year and the willingness to install offshore PV in the target year. Therefore, determining the newly installed 

capacity in a given year requires calculating the actual installation willingness for offshore PV in that year. 

(2) The willingness to install offshore PV power generation systems depends on the actual economic benefits of 

offshore PV projects. When the return on investment meets or exceeds expectations i.e., the higher the actual 

return on investment and the shorter the investment recovery period, the stronger the investment enthusiasm, 

and the greater the newly installed capacity of offshore PVs in that year. 
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(3) Offshore PV can participate in electricity market transactions through models such as "full on-grid" to sell 

electricity and can also obtain profits from national per-kWh subsidies in addition to electricity price revenue. 

These two sources collectively constitute the annual return on offshore PV investment. Power generation revenue 

is directly related to factors such as per-kWh subsidies, sales electricity prices, and on-grid electricity price, which 

are often adjusted based on government or grid documents, causing revenue fluctuations that affect project 

investment willingness. 

(4) Typically, investment costs include initial investment cost (i.e., installation cost), operating costs, and loan 

costs. According to the learning effect of the offshore PV industry, installation cost usually decreases gradually as 

the cumulative installed capacity of offshore PV expands. Thus, an increase in offshore PV installed capacity leads 

to changes in investment costs, forming a feedback loop between installed capacity and return on investment. 

2.2. Specific Modeling of Each Module 

The system dynamics model built in this study is divided into four modules: revenue module, costs module, 

installation willingness module, and installed capacity module [26-32]. The specific modeling processes for each 

module are as follows. 

2.2.1. Revenue Module 

The revenue module in the system dynamics model primarily consists of power generation revenue. The 

revenue obtained by offshore PV through "full grid connection" is expressed as: 

 𝐺(𝑡) = 𝑃gh ⋅ 𝑇bm + 𝑃gh ⋅ 𝑆𝑡
  

(1) 

where 𝐺(𝑡) is the power generation revenue from full on-grid access in year t; 𝑇bm is the benchmark on-grid 

electricity price for PV power; 𝑃gh is the annual average power generation of offshore PV, and 𝑆𝑡 is the per-kWh 

subsidy from the renewable energy development fund. 

2.2.2. Cost Module 

The total cost of investing in offshore PV power generation systems typically includes initial investment cost, 

loan cost, and operating cost, as follows: 

 𝐶𝐻(𝑡) = 𝐶inv(𝑡) + 𝐶op(𝑡) + 𝐶cr(𝑡)  (2) 

where 𝐶𝐻(𝑡) is the total offshore PV power generation cost in year t; 𝐶inv(𝑡), 𝐶op(𝑡), and 𝐶cr(𝑡) are the initial 

investment cost, operating cost, and loan cost in year t, respectively. 

The initial investment cost covers equipment purchase costs (e.g., PV modules and grid-connected inverters), 

system design costs, installation costs, and other related expenses. The initial investment cost of offshore PV 

systems decreases as the PV industry expands. The learning curve is often used to describe this phenomenon. 

The equation is as follows: 

 𝐶inv(𝑡) = 𝐶inv0 [
𝐼(𝑡)

𝐼0
]

𝜆

 (3) 

 𝑅𝑙 = 1 − 2𝜆  (4) 

where 𝐶inv(𝑡) is the initial investment cost of the selected base year; 𝐼(𝑡) is the cumulative installed capacity of 

offshore PV in year t; 𝐼0 is the cumulative installed capacity in the base year; 𝜆 is the elasticity coefficient, and 𝑅1 is 

the learning rate, indicating that when the installed capacity doubles, the initial investment cost reduces to 1 −

𝑅𝑙of the previous value. 

Operating costs are estimated as a proportion of the initial investment cost, with the operating cost rate set as 

rop: 
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 𝐶op(𝑡) = 𝐶inv(𝑡) ⋅ 𝑟op  (5) 

Assuming the loan proportion (%) of the initial investment cost is P1, and the bank interest rate is γ, the loan 

cost is: 

 𝐶cr(𝑡) = 𝐶inv(𝑡) ⋅ 𝑃𝑙 ⋅ 𝛾  (6) 

2.2.3. Installation Intention Module 

Research indicates that the ratio of actual to expected return on investment directly affects investment 

decisions for offshore PV projects. The installation intention is expressed as: 

 𝑊𝑖(𝑡) =
𝑅(𝑡)

𝑅𝑞
  (7) 

where 𝑊𝑖(𝑡) is the installation intention in year t; 𝑅(𝑡) is the actual return on investment in year t; and 𝑅𝑞 is the 

expected return on investment. 

The return on investment is defined as the ratio of annual income to the total investment costs: 

 𝑅𝑡 =
𝐺(𝑡)

𝐶𝐻(𝑡)
× 100%  (8) 

2.2.4. Installed Capacity Module 

The annual cumulative installed capacity 𝐼(𝑡) of offshore PV is the sum of the previous year's cumulative 

installed capacity 𝐼(𝑡 − 1) and the newly installed capacity𝐼𝑛(𝑡) of that year. The newly installed capacity in a given 

year is proportional to the product of the installation intention and the newly installed capacity of the previous 

year: 

 𝐼(𝑡) = 𝑊𝑖(𝑡) ⋅ 𝐼𝑛(𝑡 − 1) + 𝐼(𝑡 − 1)  (9) 

3. policy Effectiveness Evaluation System 

To comprehensively consider the multi-level impacts of policies on offshore PV development and improve 

prediction accuracy, this paper introduces the policy implementation effects as policy effectiveness into the 

system dynamics model and applies the Grey Wolf Optimizer algorithm for optimization. 

3.1. Policy Effectiveness Evaluation Module 

This paper evaluates the implementation effect of China's PV policies from three perspectives: policy intensity, 

policy objectives, and policy measures, based on established domestic and international policy effectiveness 

evaluation systems. The evaluation criteria are shown in Table 1 [33-39]. 

The three types are classified as follows: 

1.  Supporting policies: The government promotes the high-quality development of the PV industry through 

technical support, PV poverty alleviation, and financial subsidies. 

2.  Guiding policies: The government uses policy planning, project pilots and other measures to drive PV 

industry development through planning coordination, guidance, and other methods. 

3.  Development policies: The government focuses on creating a vigorous development environment and 

market order through legal supervision, tax exemption, specification formulation, and other methods. 

After formulating the quantization assessment method for PV policies, the annual policy effectiveness of each 

type is calculated as follows: 
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Table 1: Policy document quantification table. 

Policy Text 
Quantitative 

Score 
Quantitative Standard 

Policy Impact 

5 Statutes promulgated by the National People's Congress and its Standing Committee 

4 Regulations promulgated by the State Council and various ministries and commissions 

3 
Interim regulations promulgated by the State Council, and regulations, provisions,  

and decisions promulgated by various ministries and commissions 

2 Plans, outlines, and interim provisions of various ministries and commissions 

1 Notices and announcements promulgated by various ministries and commissions 

Policy 

Objective 

5 Policy objectives are clear and quantifiable, and clear standards are proposed 

3 Policy objectives are relatively specific, but lack quantifiable standards 

1 The policy's expectations and visions were only expressed from a macro perspective 

Policy 

Measures 

5 The measure system is complete, and entities bearing liability and enforcement mechanisms are clarified 

4 
Detailed implementation measures are proposed for specific PV projects, specifying content,  

arrangements, etc., for a certain period 

3 
Basic implementation measures and relevant policy observations are proposed regarding PVs,  

but overall, macro-level requirements are proposed 

2 The policy involves PVs, and some basic enforcement content is proposed 

1 Merely PVs are mentioned, and specific implementation means are not proposed 

 

 𝑃ES(𝑡) = ∑ (𝑔𝑖 + 𝑚𝑖)
𝑛𝑠
𝑖=1 𝑝𝑖  (10) 

 𝑃ED(𝑡) = ∑ (𝑔𝑖 + 𝑚𝑖)
𝑛𝑑
𝑖=1 𝑝𝑖   (11) 

 𝑃EE(𝑡) = ∑ (𝑔𝑖 + 𝑚𝑖)
𝑛𝑒
𝑖=1 𝑝𝑖   (12) 

where t is the year of policy implementation; 𝑃ES(𝑡), 𝑃ED(𝑡), and 𝑃EE(𝑡) are the overall policy effectiveness of 

support, guidance, and development policies in year t; 𝑛𝑠, 𝑛𝑑 , and 𝑛𝑒  are the total quantity of support, guidance, 

and development policies in year t; 𝑔𝑖,𝑚𝑖, and 𝑝𝑖are the policy destination score, policy measure score, and policy 

strength score of the i-th PV policy, respectively. 

After introducing the policy effectiveness module, the cumulative installed offshore PV capacity per year can be 

expressed based on equation (9) as: 

 𝐼(𝑡) =  𝐼𝑛(𝑡)[1 + 𝜂𝑠𝑃ES(𝑡 − 𝑙𝑠) + 𝜂𝑑𝑃ED(𝑡 − 𝑙𝑑) +𝜂𝑒𝑃EE(𝑡 − 𝑙𝑒)] + 𝐼(𝑡 − 1)  (13) 

where 𝜂𝑠, 𝜂𝑑and 𝜂𝑒are the influence coefficients of supporting, guiding, and development policy effects on the 

annual newly installed capacity, respectively; and 𝑙𝑠, 𝑙𝑑, and 𝑙𝑒 are the lag periods of the supporting, guiding, and 

development policy effects, respectively. 

For policy effectiveness assessment values, considering policy lag effects, monetary policy has a long 

implementation lag, and fiscal policy has a long decision-making lag. While developed regions, despite smooth 

transmission, have long cycles, emerging markets may experience faster but more unstable effects due to 

immature institutions, or may fail entirely. Therefore, policies related to the photovoltaic industry, promulgated by 

the State Council and various ministries and commissions from 2019 to 2024, were retrieved from websites for 

effectiveness assessment. Policy effects from 2025 to 2030 were estimated based on 2019 to 2024 data. Given the 

chaotic nature of annual policy effects, the ARMA time series model integrating trending and mean-regression 

theories was used for forecasting. The statistical results of policy effects from 2019 to 2030 are shown in Fig. (2). 
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Figure 2: Policy effectiveness statistics, 2019-2030. 

3.2. Grey Wolf Optimizer 

Since the influence coefficients of supportive, guiding, and developmental policies on the annual newly 

installed capacity of offshore PV power are difficult to determine, the Grey Wolf Optimizer algorithm is used to 

optimize these parameters to improve forecasting accuracy and effectiveness [40-46]. 

GWO was proposed by Mirijalili et al. in 2014 as a swarm intelligence optimization algorithm based on grey 

wolves hunting behavior. The GWO algorithm has attracted attention due to its simple structure and global 

convergence advantages [47-50]. During hunting, grey wolves update their positions by tracking the top three 

wolves. In a D-dimensional space, a population of N grey wolves is represented as X = (X1, X2, ..., XN), and the vector 

position of the i-th grey wolf is Xi = [Xi1, Xi2, ..., XiD]T. After solving the fitness value for each wolf and determining 

their fitness and positions, candidate wolves adjust their mobility vector according to: 

 {

X1 = X𝛼 − A1 ⋅ (D𝛼)

X2 = X𝛽 − A2 ⋅ (D𝛽)

X3 = X𝛿 − A3 ⋅ (D𝛿)

  (14) 

 A𝑘 = 2a ⋅ r1 − a,  𝑘 = 1,2,3  (15) 

where Dα, Dβ, and Dδ represent the distances of gray wolf Xi from the top three wolves , X1, X2, …, X3 respectively, 

represent the mobility vectors toward Xi, α is the convergence factor, and r1 is a random number in [0, 1]. 

The GWO algorithm is improved by adjusting the self-adapting value of the parameter α and updating the 

candidate wolf's position using a weighted sum of the top three wolves’ positions. The candidate wolf updates its 

fitness and positioning via Equation (19) to enhance local and global convergence: 

 w1 = 2A1 ⋅ r2,  w2 = 2A2 ⋅ r2,  w3 = 2A3 ⋅ r2  (16) 

 𝑎(𝑡) =
1−(𝑖𝑡𝑒𝑟/𝑖𝑡𝑒𝑟𝑚𝑎𝑥

1−𝜇⋅(𝑖𝑡𝑒𝑟/𝑖𝑡𝑒𝑟𝑚𝑎𝑥
  (17) 
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 𝑋(𝑡 + 1) =
w1⋅X1+w2⋅X2+w3⋅X3

w1+w2+w3
  (18) 

where 𝑟2is a random number in [0, 1]; 𝑖𝑡𝑒𝑟is the current iteration number; 𝑖𝑡𝑒𝑟𝑚𝑎𝑥 is the maximum iteration 

number; 𝜇 is a nonlinear coefficient in (0, 3). 

The GWO algorithm flow is shown in Fig. (3), where the objective function is the root mean squared error 

(RMSE) between predicted and actual values. RMSEbest, RMSEmin, and RMSEi are the global minimum RMSE, 

current minimum RMSE, and RMSE of the i-th iteration, respectively. By adjusting model parameters (or algorithm 

parameters), RMSE is minimized to bring predicted values closer to actual values. 
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Ei
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Figure 3: Flowchart of system dynamics model solution based on Grey Wolf Optimization Algorithm. 

The influence coefficients of supportive, guiding, and developmental Policy effectiveness are optimized using 

GWO. The resulting coefficients are 0.00192, 0.00325, and -0.00164, respectively. The convergence curve is shown 

in Fig. (4). 

From the figure, it can be observed that after 50 iterations, the fitness value gradually stabilizes, and further 

increasing the number of iterations offers only limited improvements in solution precision. Considering the trade-

off between computational efficiency and solution accuracy, the maximum number of iterations is ultimately set 

to 50 in this study. Additionally, the population size is set to 30, a size that ensures the algorithm's convergence 

performance while effectively maintaining diversity. 
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Figure 4: GWO Algorithm Convergence Process. 

4. Simulation Analysis 

4.1. Parameter Setting 

This study uses Vensim PLE software to develop an SD-based prediction model for offshore PV installed 

capacity and investment costs. Data from the National Energy Administration (NEA) and the GWO method are 

used to calibrate and optimize simulation parameters. The model predicts development trends of offshore PV 

installed capacity and initial investment cost in Jiangsu Province, China from 2021 to 2030. 

According to the National Development and Reform Commission (NDRC) policy issued in June 2021, for Jiangsu 

Province in 2021(the initial simulation year), new centralized PV power stations and industrial/commercial 

distributed PV projects filed since 2021 adopt grid parity, with on-grid electricity prices set according to the local 

coal-fired power benchmark price. Projects completed before 2021 follow the original electricity price policy. 

For offshore PV benchmark projects from 2021 onward, on-grid electricity price changes are simulated using 

the "coal-fired power benchmark price + floating adjustment" method. As of 2021, no offshore PV feed-in tariff 

subsidies had been introduced. For reference, the NDRC has clarified a subsidy of CNY 0.42/kWh for distributed 

PV; data for 2022–2024 were obtained from relevant documents. 

This study collected data on annual effective utilization hours of PV power in nearshore cities of Jiangsu 

Province, calculated the average annual power generation per unit installed capacity, and set the 2021 installation 

cost as the base year initial investment cost (2021). Based on market research, the procurement cost of offshore 

PV equipment in Jiangsu in 2021 was approximately CNY 3/W. Considering installation and design costs, the initial 

investment cost was determined to be CNY 6.2/W. 

Based on current market operations and relevant research, the loan-to-investment ratio (%) for PV power 

generation projects is 35%-70%; bank loan interest rates are 3.5%-6.5%; and the expected return on investment 

(ROI) is generally 5%-15%. For these variables, the GWO algorithm is used for optimization. 

The initial parameter settings are shown in Table 2. 

4.2. Simulation Result Analysis 

With 2021 as the initial year, the proposed model is used to forecast and analyze the development trends of 

cumulative installed capacity and initial investment cost of offshore PV in Jiangsu Province from 2021 to 2030. 
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Table 2: Initial parameter settings. 

Model Parameters Initial Value Model Parameters Initial Value 

Ts/Yuan·(kW·h) -1 0.5283 Cinv0/Yuan·kW-1 6200 

St/Yuan·(kW·h) -1 0.42 R1/ % 15 

Tdes/Yuan·(kW·h) -1 0.391 Tbm/Yuan·(kW·h) -1 0.391 

 

4.2.1. Model Validity Verification 

The proposed model is used for backtesting of offshore PV installed capacity in Jiangsu Province from 2021 to 

2024. The backtesting results are shown in Fig. (5). By comparing the predicted values with the actual values, it can 

be observed that the average percentage error between the predicted cumulative installed capacity (considering 

policy effectiveness) and the actual cumulative installed capacity is 5%, confirming the model’s prediction 

accuracy. 

 

Figure 5: Backtesting of cumulative installed capacity of offshore PV. 

4.2.2. Prediction of Future Data 

After validating the model, it is used to predict and analyze the development trends of cumulative installed 

capacity and initial investment cost of offshore PV in Jiangsu Province from 2025 to 2030. The results are shown in 

Fig. (6). 

 

Figure 6: Development trend of cumulative installed capacity and cost of offshore PV. 
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As shown, Jiangsu Province has been steadily increased support for renewable energy, and offshore PV 

technology has advanced. Reduced costs of offshore PV modules offset the revenue gap from phased subsidy 

reductions, maintaining a high investment return rate and driving steady growth in installed capacity. The 

cumulative offshore PV installed capacity in Jiangsu Province is estimated to reach 24,557 MW by 2030, while the 

initial investment cost decreases to 2.44 Yuan/W. 

5. Conclusion 

This paper proposes a system dynamics prediction model that considers the impact of PV policy effectiveness 

on offshore PV installed capacity growth, with a focus on PV policies. The model predicts and analyzes China's 

cumulative offshore PV installed capacity from 2021 to 2030 and the initial investment cost from 2025 to 2030, 

and draws the following conclusions and future policy development recommendations: 

1.  Incorporating the effectiveness of different policy types into the system dynamics causal chain significantly 

improved prediction accuracy, reflected policy impacts, and brought predicted values closer to actual 

values. Using the policy-influenced System Dynamics Model, the development trends of cumulative 

installed capacity and initial investment cost from 2025 to 2030 were predicted.1. The results indicate that, 

with increasing policy support and technological advancements, installed capacity has gradually increased 

while investment costs have decreased. By 2030, cumulative installed capacity is projected to reach 24,557 

MW, and the initial investment cost will decrease to 2.44 yuan/w. 

2.  Due to the difficulty in determining the influence coefficients of supportive, guiding, and developmental 

policies, the Grey Wolf Optimizer was employed for parameter optimization, which effectively improved 

prediction speed and accuracy. Therefore, policies need to clearly define the investment entities and 

construction standards for offshore PV, lower the grid connection threshold for projects, and ensure the 

effective implementation of policies. 

3.  Based on the results of policy impact effectiveness, policies that have a positive impact on the growth of 

offshore PV installed capacity should be prioritized for implementation and supplemented with 

corresponding subsidies. Simultaneously, the implementation effectiveness of policies is monitored in real 

time. In cases where the actual effects deviate from model predictions, the intensity and direction of 

policies are adjusted promptly, and policy support for these weak links is specifically strengthened to 

ensure comprehensive coverage of policy effects. 

4.  The proposed model can quantitatively assess the dynamic impact of key influencing factors on offshore 

photovoltaic installed capacity, reveal synergistic or substitutive relationships between different policy 

instruments, and facilitate the consideration of synergistic effects among different policy types. For 

example, model training has revealed that the combination of subsidy policies and tax break policies has a 

greater promotional effect on installed capacity growth than implementing subsidy policies alone. 

Therefore, implementers can better utilize model results for practical guidance. 
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