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ABSTRACT 

This study presents a comparative evaluation of ensemble generation techniques for 

projecting wind speed in the state of Rio Grande do Norte, Brazil, utilizing regional 

climate models from the CORDEX initiative. Two approaches—Arithmetic Mean (AM) 

and Convex Combination (CC)—were assessed for the historical period (1994–2023) 

and for future projections (2031–2060) under the high-emission RCP 8.5 scenario. The 

findings demonstrate that the AM method consistently outperforms CC, exhibiting 

higher correlation coefficients and lower root mean square error (RMSE) values across 

all subregions analyzed. Specifically, the AM ensemble achieved correlation 

coefficients of 0.88, 0.86, and 0.80 in the northern, central, and eastern regions, 

respectively, exceeding those of the CC method (0.85, 0.84, and 0.78). Relative to 

present-day conditions, projected future wind speeds increase by approximately 

12.2% in the northern region, 23.5% in the eastern region, and 19.6% in the central 

region. A notable seasonal shift was also observed, with peak wind speeds occurring 

later in the year across all areas. These projected increases, when considered in light 

of the cubic relationship between wind speed and energy production, suggest that 

wind power potential may rise by over 40% in certain regions. It is also important to 

acknowledge that such results are subject to uncertainties inherent in climate 

modeling, including the structural differences among regional and global models and 

their associated physical parameterizations. Nonetheless, the projected enhancement 

in wind speed holds significant implications for strategic renewable energy planning in 

Rio Grande do Norte and reinforces the utility of multi-model ensemble techniques in 

climate-based energy assessments. 
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1. Introduction 

Climate change and its associated impacts have become central topics of global scientific and political 

discourse in recent years. A key driver of increased greenhouse gas (GHG) emissions is electricity generation from 

non-renewable sources. In response, expanding power production from renewable energy has emerged as one of 

the most effective strategies to reduce emissions and mitigate the effects of climate change [1]. In Brazil, there has 

been notable growth in electricity generation from wind and solar sources. 

Unlike most countries, Brazil already derives the majority of its electricity from renewable sources. As of 2024, 

approximately 85% of the country's 200 gigawatts (GW) of installed electrical capacity comes from clean energy. 

However, the Brazilian energy matrix remains heavily dependent on hydroelectric power, which accounted for 

50.3% of total electricity generation in 2023, according to the Brazilian Wind Energy Association [2]. This reliance 

on hydropower is concerning, particularly in light of Brazil’s recurring droughts, such as those experienced in the 

Northeast Region (NEB) between 2012 and 2017 [3]. 

Wind energy has become the second-largest source of electricity in Brazil, contributing 15.9% of the national 

total in 2023 [2]. That year, Brazil had 1,027 operational wind farms, with a combined installed capacity of 30.45 

GW—an 18.79% increase over 2022, when the capacity stood at 25.63 GW [2]. The favorable conditions in 2023 

positioned Brazil as the third-largest installer of wind farms globally, behind only the United States and China. 

Within Brazil, the Northeast Region plays a leading role in wind energy production, accounting for 92% of the 

country’s wind-generated electricity. Between 2022 and 2023, the region experienced a 19% increase in wind 

energy output, while the North Region saw a comparatively modest growth of 8% [2]. 

The Northeast’s strong wind energy performance is primarily attributed to its unique geographical and 

atmospheric conditions. The region is influenced by the Intertropical Convergence Zone (ITCZ) and trade winds, 

both of which provide steady and directionally consistent airflow throughout the year [4]. It is also affected by the 

South Atlantic Subtropical Anticyclone (SASA), which intensifies during the second half of the year, further 

enhancing wind speeds [5]. 

Assessing wind energy potential is crucial for strategic planning and investment decisions. A thorough 

understanding of regional wind patterns is essential for evaluating the viability of wind farm development. While 

such assessments are typically based on data from meteorological stations, these datasets are often incomplete, 

inconsistent, or temporally sparse, reducing their reliability. Moreover, standard measurements are taken at 10 

meters above ground, whereas modern wind turbines operate at heights closer to 100 meters. This discrepancy 

necessitates the use of supplementary methods to accurately estimate wind energy potential [6]. 

To overcome these limitations, researchers increasingly rely on reanalysis datasets. A leading source of such 

data is the European Centre for Medium-Range Weather Forecasts (ECMWF), which provides the ERA5 reanalysis. 

This dataset spans from 1950 to the present and offers a horizontal resolution of 0.25° × 0.25° [7]. For projecting 

future climate conditions, climate models are widely employed. In South America, the Regional Climate Model 

(RCM) RegCM4.7—developed under the framework of the Coordinated Regional Climate Downscaling Experiment 

(CORDEX-CORE)—is commonly used [8]. Its proven ability to simulate temperature and precipitation fields [9, 10] 

makes it a dependable tool for regional climate analysis. 

One of the key approaches recommended by the IPCC for projecting future wind speed involves the use of 

Representative Concentration Pathways (RCPs). This study adopts the RCP 8.5 scenario, which represents a high-

emission pathway in which radiative forcing is projected to reach 8.5 W/m² by the year 2100 as a result of 

increasing greenhouse gas (GHG) concentrations [9, 10]. 

The RCP 8.5 scenario was selected because it reflects a trajectory characterized by minimal mitigation efforts 

and continued high emissions. This allows for the assessment of the most substantial potential changes in climate, 

offering insights into extreme impacts under a business-as-usual development model. Although RCP 8.5 is 

currently considered less likely due to the adoption of more ambitious climate policies, it remains a critical 
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benchmark in climate impact studies. It is particularly relevant for identifying risks and informing long-term 

adaptation strategies. For example, [11] employed RCP 8.5 to evaluate future offshore wind energy resources, 

highlighting its importance in guiding infrastructure investment and policymaking under worst-case scenarios. 

Similarly, [12] used this pathway to assess the sensitivity of European wind power potential to climate change, 

reinforcing the utility of high-emission scenarios for exploring upper-bound variability in renewable energy 

resources. RCP 8.5 also serves as a reference for numerous global and regional modeling experiments, having 

been designed as the upper boundary scenario in the original RCP framework [13]. 

Projections of climate variables, particularly wind speed, are inherently subject to several sources of 

uncertainty. These include internal climate variability, differences in the structure and parameterization of climate 

models, and the uncertainty associated with future emission trajectories. Recent studies have identified internal 

variability as one of the leading contributors to uncertainty in wind energy projections, alongside inter-model 

spread and scenario dependency [14]. In addition, systematic biases in climate models—such as the 

misrepresentation of physical processes or the limitations imposed by coarse spatial resolution—can significantly 

affect the fidelity of wind projections [15]. Identifying, quantifying, and accounting for these sources of uncertainty 

is essential to support robust, evidence-based decision-making in the energy sector and to facilitate the design of 

effective adaptation strategies. 

Despite the importance of such assessments, studies that focus explicitly on future wind speed projections 

remain limited and often rely on simplified approaches. For instance, [9, 10] employed ensemble techniques 

based on the arithmetic mean of climate model outputs. Meanwhile, [16] restricted their analysis to individual 

models under present-day climate conditions. A more advanced strategy was proposed by [17], who introduced 

alternative ensemble generation methods—such as Convex Combination and Principal Component Regression—

which were shown to outperform the arithmetic mean, especially in future projection contexts. Building on this 

evidence, the present study incorporates the Convex Combination (CC) approach as a robust ensemble generation 

methodology. 

As demonstrated by [18] ensemble techniques that apply convex combination weighting schemes have shown 

superior performance in short-term wind speed forecasting, yielding more stable and accurate prediction intervals. 

In the context of this study, Convex Combination is employed to improve the skill of wind speed projections by 

assigning weights to individual model outputs based on their past performance. [17] demonstrated that the CC 

approach outperformed the arithmetic mean when applied to future climate simulations, particularly for variables 

with high spatial and temporal variability, such as wind speed. This methodology enhances the precision of 

climate signal extraction and reduces the impact of poorly performing models, thereby increasing the reliability of 

projections for wind resource assessment and energy planning. 

The primary contribution of this research lies in addressing the scarcity of high-resolution wind speed 

projections for future scenarios, with a particular focus on wind power potential. This study concentrates on the 

state of Rio Grande do Norte, Brazil's leading wind energy producer, and conducts an in-depth analysis of three 

distinct sub-regions. In addition to adopting a novel ensemble strategy, the aim is to reduce projection uncertainty 

for both wind speed and wind power density, thereby enhancing the utility of the results for long-term 

infrastructure and policy planning. 

The three selected areas within Rio Grande do Norte were chosen based on two core criteria. First, each area 

exhibits a high density of operational wind farms, making them relevant case studies for current and future wind 

energy exploration. Second, they are situated in climatically diverse zones of the state, allowing for a broader and 

more comparative assessment of regional atmospheric dynamics [17]. A detailed description of the climatological 

characteristics and model validation for each area is provided in the Materials and Methods section. 

From a planning perspective, it is important to emphasize that the areas identified as having the highest 

average wind speeds in this study correspond to those with the greatest concentration of installed wind 

infrastructure, as previously reported by [16]. This spatial alignment between modeled wind potential and existing 

development underscores the practical relevance of the projections, particularly for expanding and optimizing 

renewable energy strategies at both local and regional levels. 
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The overarching goal of this research is to compare ensemble methods based on regional climate models from 

the CORDEX initiative, applied to the state of Rio Grande do Norte during the historical period (1994–2023), and to 

project future wind speed for the mid-century period (2031–2060) under the RCP 8.5 scenario. The method that 

exhibits the best performance will be adopted to generate wind speed forecasts with reduced uncertainty, thereby 

supporting more accurate wind energy planning. 

2. Materials and Methods 

2.1. Study Area 

We examined three areas in this study: 1) Eastern Rio Grande do Norte, 2) Northern Rio Grande do Norte, and 

3) Central Rio Grande do Norte. Fig. (1) shows the location of these areas. 

The selection of the three study areas in Rio Grande do Norte was based on their high density of installed wind 

farms, as reported by [16]. Additionally, the areas were chosen to represent distinct geographical and climatic 

characteristics, allowing for a more comprehensive analysis of wind patterns across diverse sub-regions. 

 

Source: Adapted from: www.baixarmapas.com.br 

Figure 1: Location of Rio Grande do Norte on the map of the Northeast region and the study areas. 

The eastern region of Rio Grande do Norte, encompassing the state capital Natal, is characterized by a tropical 

Atlantic climate with high humidity and precipitation concentrated between May and August, influenced by 

easterly wave systems. Wind speeds in this area remain relatively stable throughout the year, ranging from 2.9 to 

5.2 m/s, with an average between 4.3 and 4.4 m/s, as determined by Weibull distribution analysis. This consistency 

is largely due to the prevailing southeast trade winds originating from the Atlantic Ocean [19]. The Mato Grande 

region (including João Câmara) stands out for its high density of wind farms, accounting for approximately 56% of 

Rio Grande do Norte's installed wind energy capacity. The region benefits from strong winds throughout most of 

the year, a result of its strategic geographic location where trade winds curve around the South American 
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continent [19]. The northern region, including areas such as the Chapada do Apodi, exhibits a semi-arid climate 

with average annual temperatures around 28.5°C and an average annual precipitation of 772 mm. Winds in this 

area average 7.5 m/s, with higher intensities observed during the second half of the year, enhancing its suitability 

for wind energy generation. 

2.2. Data 

2.2.1. ECMWF-ERA5 Reanalysis 

The ERA5 reanalysis dataset, developed by the European Centre for Medium-Range Weather Forecasts 

(ECMWF), is distributed through the Copernicus Climate Data Store and represents the fifth generation of 

reanalysis products [7]. In this study, we utilized monthly mean wind speed data at 100 meters above ground level 

for the period 1994–2023 to represent present-day conditions. The dataset features a uniform horizontal 

resolution of 0.25° × 0.25° in both latitude and longitude. ERA5 was used as the observational reference in this 

study, serving as a substitute for in situ meteorological station data [7]. 

2.2.2. Regional Climate Models 

For future projections, we employed the Regional Climate Model (RCM) RegCM4.7 [20], developed as part of 

the CORDEX-CORE initiative [8]. This RCM was driven by three distinct Global Climate Models (GCMs): HadGEM2-ES 

[21], NorESM1-M [22], and MPI-ESM-MR [23]. Each GCM provides boundary conditions based on its own physical 

and mathematical framework, resulting in variations in the downscaled climate simulations [24]. 

Wind speed outputs from RegCM4.7 were obtained on a monthly timescale for the period 1994–2060, with an 

original spatial resolution of 0.22° × 0.22°. To ensure consistency in model validation, these outputs were bilinearly 

resampled to match the 0.25° × 0.25° resolution of the ERA5 dataset. 

While RCMs are widely used for downscaling global climate projections and refining spatial detail, their outputs 

are subject to inherent uncertainties that may affect the accuracy of wind speed simulations. A primary source of 

uncertainty stems from the large-scale boundary conditions imposed by the driving GCMs. These conditions can 

introduce systematic biases, which are then inherited by the regional models. As noted by [25], the performance 

of RCMs is closely tied to the quality of their GCM inputs—an issue commonly referred to as the "garbage in, 

garbage out" principle. Moreover, [26] emphasized that physical parameterizations in climate models are typically 

based on empirical constants derived from specific climatic regions, potentially introducing additional biases when 

applied to different geographic contexts such as the Northeastern region of Brazil (NEB). 

2.3. Methodology 

2.3.1. Model Ensembles 

Multi-model ensembles are widely adopted in climate science to reduce uncertainties in future projections. By 

integrating outputs from multiple individual models, ensemble techniques enhance forecast reliability through the 

combination of their unique characteristics. This integration helps smooth inter-model discrepancies and mitigate 

systematic errors, ultimately improving model performance and confidence in projections [27-30]. 

The first known application of an arithmetic mean ensemble to simulate meteorological variables in South 

America was conducted by [31], yielding promising results. Building upon this foundation, the present study 

evaluates and compares two ensemble generation methodologies: the Arithmetic Mean (AM) and the Convex 

Combination (CC). 

2.3.1.1. Arithmetic Mean (AM) 

The arithmetic mean is one of the most widely used statistical measures, representing the central tendency of 

a set of values. In the context of climate modeling, it involves calculating the simple average of outputs from 

multiple models. The arithmetic mean at a given time t is defined as, equation (1): 
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𝑨𝑴𝒕 =
1  

𝑛 
 ∑ 𝑉𝑖,𝑡

𝑛

𝑖=1
 (1) 

Where: AMt is the arithmetic mean at time t for the n models, n is the total number of models, Vi,t is the wind 

speed in model i at time t, t represents time. 

2.3.1.2. Convex Combination (CC) 

The convex combination is an advanced ensemble method that assigns weights to each model based on its 

performance relative to reference observations [17]. A key property of this method is that all weights are strictly 

positive and sum to 1, ensuring a balanced and interpretable contribution from each model. 

In this study, model weights are determined using the Mean Squared Error (MSE). Originally proposed by [17, 

32] for precipitation simulations over South America, the use of MSE was shown to enhance model skill. Given its 

robustness in capturing discrepancies between model output and observations, this metric was also applied here 

to wind speed simulations. 

The MSE is defined as [33]: 

𝐸𝑄𝑀 =
1

𝑛
∑ [𝑚𝑜𝑑𝑖

𝑛

𝑖=𝑛
− 𝑜𝑏𝑠𝑖]

2 (2) 

The weighted mean, based on MSE, is given by Equation (3): 

𝑥𝑙̅ =
(∑

1

𝐸𝑄𝑀𝑀𝑖
𝑥𝑀𝑖)

𝑛
𝑖=1

∑
1

𝐸𝑅𝑀𝑀𝑖

𝑛
𝑖=1

 (3) 

where: modi is the value of the Regional Climate Models, and obsi is the value of the reanalysis; N is the number of 

observations, Mi is the model forecast, with i=1,2,...,8  

2.3.2. Monthly Variability of Wind Speed at 100m Above Ground in RN Areas 

To evaluate the monthly variability of wind speeds during the present-day period (1994–2023), a descriptive 

statistical analysis was conducted for each study area in the state of Rio Grande do Norte. Wind speed data at 100 

meters above ground level were examined using boxplots, which allow for the visualization of seasonal trends, 

interquartile ranges, and potential outliers. This analysis provides a clearer understanding of wind behavior across 

different months and regions. 

2.3.3. Comparison Between Methodologies and Models – Taylor Diagram 

According to [24], one of the most comprehensive and visually intuitive methods for assessing model 

performance is the Taylor Diagram [34]. This graphical tool enables the simultaneous evaluation of three essential 

statistical metrics: Root Mean Square Error (RMSE) [36], Pearson Correlation Coefficient [36], Standard Deviation 

[34]. These three metrics are standard outputs of the diagram.taylor function available in the R programming 

environment, which is commonly used in climate data analysis. The choice of these metrics follows established 

practices in the literature and ensures consistency with statistical tools broadly adopted in the climate modeling 

community. 

In the Taylor Diagram, the reanalysis data are plotted along the x-axis as the reference point. Model outputs 

and ensemble estimates are displayed as points in a Cartesian space, where proximity to the reference point 

indicates higher agreement with observed data. 

Table 1 summarizes the equations used to compute each of these statistical indicators (Equations 4–6). 

Where: 𝑃𝑒𝑛𝑠 corresponds to the ensemble data; 𝑃𝑜𝑏𝑠 corresponds to the observed data; n representing the 

number of observations. 𝑃𝑜𝑏𝑠,𝑖 is the observed value at time i; 𝑃𝑜𝑏𝑠 is the mean observed value; 𝑃𝑒𝑛𝑠,𝑖 is the 
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estimated value in the ensemble at time i; 𝑃𝑒𝑛𝑠 is the mean estimated value of the ensemble; r is the Pearson 

correlation coefficient. 𝜎𝑜𝑏𝑠 (𝑚𝑜𝑑) is the Standard Deviation of the observations and ensemble.  

The equation (6) is used to calculate de standard deviation of the observations and after from ensemble data. 

Table 1: Summary of the equations used in the Taylor Diagram. 

Key metrics Equation 

Root Mean Square Error 𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑛

𝑖=1 𝑝𝑒𝑛𝑠 − 𝑃𝑜𝑏𝑠)   (4) 

Pearson Correlation Coefficient 𝑟 =
∑ ( 𝑃𝑜𝑏𝑠,𝑖−𝑃𝑜𝑏𝑠)(𝑃𝑒𝑛𝑠,𝑖−𝑛

𝑖=1 𝑃𝑒𝑛𝑠)

√∑ 𝑃𝑜𝑏𝑠,𝑖−𝑛
𝑖=1 𝑃𝑜𝑏𝑠)2𝑥(∑ 𝑃𝑒𝑛𝑠,𝑖−𝑃𝑒𝑛𝑠)2𝑛

𝑖=1

  (5)  

Standard Deviation 𝜎𝑜𝑏𝑠(𝑚𝑜𝑑) = √
(𝑃𝑜𝑏𝑠,𝑖−𝑃𝑜𝑏𝑠)2

(𝑛−1)
  (6) 

 

2.3.4. Comparison of Wind Speed at 100m Above Ground Using the Best Methodology for Present and Future 

At this stage of the study, a climatological analysis of the data will be conducted by calculating the monthly 

climatological mean for the entire analyzed period. Through line graphs, it will be possible to assess wind speed 

trends over time, identifying potential increases or decreases in wind intensity for the future (2031-2060), based 

on the best ensemble methodology identified for the present period (1994-2023). 

3. Results and Discussion 

3.1. Monthly Variability of Wind Speed at 100m Above Ground in RN Areas 

Fig. (2-4) illustrate wind variability in the northern, eastern, and central ( João Câmara region) parts of Rio 

Grande do Norte from 1994 to 2023, respectively. 

 

Figure 2: Wind variability in the northern part of Rio Grande do Norte for the present (1994-2023).  
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Figure 3: Wind variability in the eastern part of Rio Grande do Norte for the present (1994-2023). 

 

Figure 4: Wind variability in the central part of Rio Grande do Norte for the present (1994-2023). 

The climatological analysis of wind speed at 100 m above ground level in Rio Grande do Norte (1994-2023) 

reveals distinct seasonal patterns. The analysis of the boxplot graphs reveals a clear seasonal variability in average 

wind speeds across the three studied regions of Rio Grande do Norte (RN), Brazil: the northern, central ( João 

Câmara), and eastern areas. It is evident that the highest mean wind speeds occur between August and November, 

whereas the lowest values are recorded between March and May. 

Specifically, in the eastern region, average wind speeds range from approximately 2.5 m/s in March to 6.5 m/s 

in September. In the central region, wind speeds vary between 3.5 m/s in April and 8.5 m/s in September. The 

northern region exhibits the highest values, with averages ranging from 4.0 m/s in March to 9.5 m/s in September. 

These patterns indicate a marked intensification of wind activity in the second half of the year, particularly 

between August and November. 

The seasonal variability observed in wind speeds is closely linked to the dynamics of large-scale atmospheric 

systems, notably the South Atlantic Subtropical Anticyclone (SASA). During the austral winter, SASA tends to shift 



Gurgel and Alves Global Journal of Earth Science and Engineering, 12, 2025 

 

22 

toward lower latitudes, intensifying wind flow over northeastern Brazil. This southward displacement enhances 

the atmospheric pressure gradient, thereby increasing wind speeds across the region [5, 7]. 

In addition to the influence of SASA, the Intertropical Convergence Zone (ITCZ) plays a crucial role in 

modulating the seasonal distribution of wind in the region. During August and September, the ITCZ migrates 

northward in response to shifts in the thermal equator. This migration amplifies thermal gradients between the 

continent and the adjacent Atlantic Ocean, reinforcing the southeast trade winds and mesoscale circulations such 

as sea breezes—particularly along coastal and adjacent inland areas [37]. According to [38], the ITCZ, formed by 

the convergence of northeasterly and southeasterly trade winds, is a key component of tropical atmospheric 

circulation. Its seasonal movement not only shapes rainfall patterns but also directly affects wind regimes across 

northern South America, including northeastern Brazil. 

Climatic phenomena such as El Niño and La Niña also play an important role in the interannual variability of 

wind speeds. During El Niño events, higher wind speeds are generally observed, whereas La Niña years tend to be 

associated with reduced wind intensities. These variations reflect the broader influence of the El Niño–Southern 

Oscillation (ENSO) on regional atmospheric dynamics [39]. 

Previous studies further corroborate the findings of this research. For example, [16] identified that the 

northern regions of Rio Grande do Norte and Ceará exhibit the highest wind power densities, particularly between 

August and November. Likewise, [39] observed that wind speeds in central Northeast Brazil tend to peak between 

July and November and reach their minimum between March and April. 

Understanding these spatiotemporal patterns is critical for optimizing the planning and operation of wind 

power generation in the region. Identifying the months with the most favorable wind conditions enables better 

resource allocation and enhances the operational efficiency of wind farms, particularly in semi-arid and coastal 

zones where seasonal variation is pronounced. 

3.2. Comparison Between Methodologies and Models – Taylor Diagram 

Fig. (5-7) present Taylor diagrams for the recent past, illustrating model performance in the northern, eastern, 

and central ( João Câmara) regions of Rio Grande do Norte, respectively. 

 

Figure 5: Taylor diagram for the northern area of Rio Grande do Norte for the present. 
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Figure 6: Taylor diagram for the eastern area of Rio Grande do Norte for the present. 

 

Figure 7: Taylor diagram for the central area of Rio Grande do Norte for the present. 

The Taylor diagrams indicate that the Arithmetic Mean (AM) generally outperforms the Convex Combination 

(CC) across all study regions. In the northern region of Rio Grande do Norte, AM achieved a correlation coefficient 

of 0.88 and a root mean square error (RMSE) of 1.0 m/s, compared to CC’s correlation of 0.85 and RMSE of 1.2 m/s. 

In the eastern region, AM recorded a correlation of 0.80 and RMSE of 1.4 m/s, also surpassing CC, which had a 

correlation of 0.78 and RMSE of 1.6 m/s. Similarly, in the central region (João Câmara), AM performed slightly 

better (correlation = 0.86; RMSE = 1.0 m/s) than CC (correlation = 0.84; RMSE = 1.1 m/s). 
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This outcome contrasts with the findings of [17], who argued that the convex combination method is 

statistically superior due to its ability to minimize ensemble error through the weighted contribution of each 

model. The discrepancy may stem from regional differences in model error distributions. While CC is theoretically 

more effective in scenarios with divergent model biases, AM may perform better when models exhibit comparable 

error structures. These findings support the recommendation by [31], who emphasize that the effectiveness of 

ensemble methods must be evaluated locally, according to the behavior of the individual models and the target 

variable. 

Furthermore, three individual models—MPI, NorESM, and HADGEM—demonstrated lower performance across 

all domains, with reduced correlation and increased RMSE. This supports the consensus in the literature that 

ensemble approaches consistently outperform individual models, offering more robust and less volatile 

approximations of observed [27, 40]. 

The discrepancies in model performance can be further explained by underlying uncertainties in model 

structure and boundary conditions. Firstly, regional models are sensitive to their driving global models (GCMs), 

which may propagate systematic biases related to the representation of synoptic-scale features such as pressure 

gradients and jet streams [41]. Secondly, scenario assumptions—particularly regarding greenhouse gas 

concentrations and aerosol forcing—affect how the models simulate future climate conditions. In this study, all 

projections were based on the RCP 8.5 scenario, which assumes high emissions and minimal mitigation. 

Additional uncertainties stem from the physical parameterizations of atmospheric processes—especially those 

governing boundary-layer turbulence, convection, and surface roughness—which directly influence the simulation 

of wind speed. The spatial resolution also plays a critical role: coarse-resolution models are less able to resolve 

mesoscale processes such as sea breezes and topographic flows, which are essential for accurate wind energy 

assessments in coastal environments like Rio Grande do Norte. These uncertainties were also addressed by [17], 

who emphasized the importance of selecting the ensemble technique and individual members that exhibit the 

best statistical performance in each specific area to reduce uncertainty in wind resource estimation. 

Therefore, although the arithmetic mean method demonstrated superior statistical metrics in this analysis, the 

overarching conclusion remains: ensemble methods—regardless of their specific formulation—offer a more 

reliable basis for regional wind projections than any single model. This insight is essential for guiding future 

assessments of wind energy potential in the Brazilian Northeast, where minimizing uncertainty is critical for 

sustainable energy planning. 

3.3. Comparison of Wind Speed at 100m Above Ground Using the Best Methodology for Present and Future 

Fig. (8-10) present the wind speed climatologies for the northern, eastern, and central regions of Rio Grande do 

Norte, respectively. These climatologies were developed using the best statistical method identified in section 3.2: 

the arithmetic mean. The figures compare the projected future wind speed climatology (2025–2054) with the past 

climatology (1994–2023) using the same technique. Additionally, the comparisons include the ERA5 reanalysis 

dataset, which serves as a reference. 

The statistical analysis of wind speed climatologies for these three regions reveals significant future trends, 

including increases in wind intensity and changes in seasonality, as projected by the ensemble based on the AM. 

In the northern region, the maximum wind speed in the past (ERA5) was 9.8 m/s in September. Future 

projections indicate an increase to 11.0 m/s, with the peak month shifting to October. Meanwhile, the minimum 

wind speed, which was 5.5 m/s in April, slightly decreases to 5.2 m/s and shifts to May. These changes suggest a 

prolongation of the strong wind season, possibly linked to alterations in regional atmospheric circulation. 

In the eastern region, the projected increase in wind speed is even more pronounced. The maximum speed, 

previously 7.5 m/s in September, rises to 10.2 m/s in October, signaling a substantial enhancement in the region’s 

wind power potential. The minimum speed also increases, from 3.5 m/s in March to 4.8 m/s in April. The shift in 

maximum and minimum wind speeds may be linked to modifications in trade wind dynamics and the 

strengthening of the SASA, which influences regional wind patterns. 
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Figure 8: Comparison of wind speed climatology between the past and the future for the northern region of Rio Grande do 

Norte. 

 

Figure 9: Comparison of wind speed climatology between the past and the future for the eastern region of Rio Grande do 

Norte. 

In the central region, the maximum wind speed, which occurred in August at 8.5 m/s, is now projected for 

September at 10.5 m/s. The minimum wind speed increases from 4.8 m/s in March to 5.3 m/s in April. This region, 

already known for its high wind power density, could benefit even further from this projected intensification. 

These results align with previous studies that project a future increase in wind speeds due to atmospheric 

circulation changes [9]. However, the observed shifts in seasonal wind patterns—particularly the delay in peak 

speeds—warrant further investigation. One possible explanation is the delayed intensification of the South 

Atlantic Subtropical Anticyclone (SASA), as suggested in studies of wind variability in South America [5]. 
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Figure 10: Comparison of wind speed climatology between the past and the future for the central region of Rio Grande do 

Norte. 

The increase in wind speed directly implies growth in wind energy potential. According to the wind power 

equation, energy generation is proportional to the cube of wind speed, meaning that a 10% increase in wind 

speed could result in approximately a 33% increase in wind power generation [16]. 

These findings are crucial for energy planning in Rio Grande do Norte, Brazil’s leading wind energy producer, as 

they highlight the potential for expanding wind farm capacity and optimizing infrastructure to accommodate 

evolving wind patterns. 

These projections underscore the critical role of climate modeling in accurately assessing future wind power 

potential and guiding strategic energy investments in the region. 

4. Conclusion  

The results of this study indicate that the ensemble technique based on the Arithmetic Mean (AM) performed 

better than the Convex Combination (CC), contradicting previous studies that suggested greater effectiveness of 

CC. This suggests that, for the studied region, model weighting may not provide significant advantages when 

individual models exhibit similar error patterns. However, this outcome may not be directly generalizable to other 

regions with different climatic dynamics or error structures across models, and future studies should evaluate the 

robustness of these findings under varying geographic and climatic conditions. Additionally, the results reinforce 

the reliability of using ensembles over individual models, reducing uncertainties in climate projections. 

Nonetheless, potential sources of uncertainty remain, including model resolution limitations, boundary condition 

assumptions, and internal variability that may influence the ensemble performance. 

The projected increase in wind speed and the shift in peak intensity months may be related to the 

intensification of the South Atlantic Subtropical Anticyclone (SASA) and changes in atmospheric circulation 

patterns. Since wind power is proportional to the cube of wind speed, the results suggest a significant increase in 

wind energy generation in the future. While this trend appears promising, it is important to consider whether the 

observed intensification could also lead to increased variability or more frequent extreme wind events, which may 

pose operational challenges for wind energy infrastructure. Moreover, it remains to be investigated whether 
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similar patterns would emerge in other subtropical regions, which could have important implications for global 

renewable energy planning. 

These findings highlight the importance of climate modeling in developing strategies for the expansion of 

renewable energy in Brazil. They also provide valuable insights for regional energy policy and infrastructure 

planning, supporting the optimization of wind farm siting and long-term investment strategies. A limitation of this 

study is the focus on a single RCP scenario and a specific subset of regional models; exploring alternative 

emissions trajectories and incorporating additional model outputs could offer a more comprehensive assessment. 

Future research should consider testing additional RCP scenarios and further refining ensemble techniques 

using a broader range of regional climate models, as well as investigating how these changes in wind regimes 

interact with local socioeconomic and environmental factors. 
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